Packing nearly optimal Ramsey $R(3, t)$ graphs

He Guo
Georgia Tech

Joint work with Lutz Warnke

Context of this talk

Ramsey number $R(s, t)$

$R(s, t):=$ minimum $n \in \mathbb{N}$ such that every red/blue edge-coloring of complete n-vertex graph K_{n} contains red K_{s} or blue K_{t}

- Major problem in combinatorics: determining asymptotics
- Testbed for new proof techniques/methods: Alteration, LLL, Concentration Ineq., Semi-Random, Differential Eq.

Celebrated Result (Ajtai-Komlós-Szemerédi 1980 + Kim 1995)

$R(3, t)=\Theta\left(t^{2} / \log t\right)$

- Lower bound harder: Kim received Fulkerson Prize 1997
- $R(3, t)=\Omega\left(t^{2} /(\log t)^{2}\right)$ already by Erdős in 1961

Topic of this talk

Extension of Kim-result (implies asymptotics of other Ramsey parameter)

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n} \log n$

- Construct G in the binomial random graph $G_{n, p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_{n}$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

* Tight up to the constant: Ajtai-Komlós-Szemerédi (1980)
* Lead to the right order of magnitude of Ramsey number $R(3, t)$
- Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n} \log n$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

Why this result is difficult?

Standard approach (alteration): in $G_{n, p}$, try to remove one edge of all Δ 's Facts: w.h.p.

- \#edges $=\Theta\left(n^{2} p\right)$
- $\# K_{3}{ }^{\prime} \mathrm{s}=\Theta\left(n^{3} p^{3}\right)=\Theta\left(n^{2} p \cdot n p^{2}\right) \ll \#$ edges $\Rightarrow p=\varepsilon / \sqrt{n}$
- Max ISET of $G_{n, p} \approx \frac{2 \log n}{p} \stackrel{!}{=} C \sqrt{n} \cdot \log n \gg \sqrt{n \log n}$

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ
Δ-free process: add one random edge in each step
open (can be added) \longrightarrow

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ
Δ-free process: add one random edge in each step
open (can be added) \longrightarrow

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ
Δ-free process: add one random edge in each step
open (can be added) \longrightarrow

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ
Δ-free process: add one random edge in each step
open (can be added) \longrightarrow

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ
Δ-free process: add one random edge in each step
open (can be added) \longrightarrow
\longleftarrow closed (cannot be added)

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ
Δ-free process: add one random edge in each step
open (can be added) \longrightarrow
\leftarrow closed (cannot be added)

Review of previous results

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_{n}$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ

Semi-random variation: add many random-like edges in each step
open (can be added) \longrightarrow
\leftarrow closed (cannot be added)

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_{n}$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ

G., Warnke (2020): almost packing of nearly optimal $R(3, t)$ graphs

Given $\varepsilon>0$, we find edge-disjoint graphs $\left(G_{i}\right)_{i \in \mathcal{I}}$ with $G_{i} \subseteq K_{n}$ such that (a) each G_{i} is Δ-free with $\alpha\left(G_{i}\right) \leq C_{\varepsilon} \sqrt{n \log n}$
(b) the union of the G_{i} contains $\geq(1-\varepsilon)\binom{n}{2}$ edges

- Using simple polynomial-time randomized algorithm:
sequentially choose G_{i} via semi-random variation of Δ-free process
- Start with $H_{0}=K_{n}$
- Find $G_{i} \subseteq H_{i}$ and set $H_{i+1}=H_{i} \backslash G_{i}$ and repeat

G., Warnke (2020): almost packing of nearly optimal $R(3, t)$ graphs

Given $\varepsilon>0$, we find edge-disjoint graphs $\left(G_{i}\right)_{i \in \mathcal{I}}$ with $G_{i} \subseteq K_{n}$ such that (a) each G_{i} is Δ-free with $\alpha\left(G_{i}\right) \leq C_{\varepsilon} \sqrt{n \log n}$
(b) the union of the G_{i} contains $\geq(1-\varepsilon)\binom{n}{2}$ edges

- Using simple polynomial-time randomized algorithm: sequentially choose G_{i} via semi-random variation of Δ-free process
- Start with $H_{0}=K_{n}$
- Find $G_{i} \subseteq H_{i}$ and set $H_{i+1}=H_{i} \backslash G_{i}$ and repeat

Motivation: why should we care?

- Natural packing extension of Kim's result
- Technical challenge: controlling errors over $\Theta(\sqrt{n / \log n})$ iterations
- Establishes Ramsey-Theory conjecture by Fox et.al. (cf. next slides)
$G \rightarrow(H)_{r}: \Leftrightarrow$ any r-coloring of $E(G)$ has monochromatic copy of H
Ramsey theory \triangleq studying properties of " r-Ramsey minimal graphs"
$\mathcal{M}_{r}(H):=$ all graphs G that are r-Ramsey minimal for H

$$
\text { (i.e., } G \rightarrow(H)_{r} \text { and } G^{\prime} \nrightarrow(H)_{r} \text { for all } G^{\prime} \subsetneq G \text {) }
$$

- $\min _{G \in \mathcal{M}_{r}\left(K_{k}\right)} v(G)=$ Ramsey number
- $\min _{G \in \mathcal{M}_{r}\left(K_{k}\right)} e(G)=$ Size Ramsey number

Minimum degree of r-Ramsey minimal graphs (Burr, Erdős, Lovász 1976)
$s_{r}(H):=\min _{G \in \mathcal{M}_{r}(H)} \delta(G)$

- $s_{2}\left(K_{k}\right)=(k-1)^{2}$: Burr, Erdős, Lovász (1976)
- $s_{2}(H)=2 \delta(H)-1$: for many bipartite H (trees, $K_{a, b}$, etc) Fox, Lin (2006) + Szabó, Zumstein, Zürcher (2010)
- $s_{r}\left(K_{k}\right)=\tilde{\Theta}_{k}\left(r^{2}\right)$: Fox, Grinshpun, Liebenau, Person, Szabó (2015)

Ramsey Conjecture of Fox et.al.

Minimum degree of minimal r-Ramsey graphs (Burr, Erdős, Lovász 1976)
$s_{r}\left(K_{k}\right):=\min _{G \in \mathcal{M}_{r}\left(K_{k}\right)} \delta(G)$

- $c r^{2} \log r \leq s_{r}\left(K_{3}\right) \leq C r^{2}(\log r)^{2}$ by FGLPS (2015)

Conjecture (Fox, Grinshpun, Liebenau, Person, Szabo, 2015)
$s_{r}\left(K_{3}\right)=O\left(r^{2} \log r\right)$

- They suggested to pack G_{i} sequentially via Δ-free process
(their weaker upper bound relies on sequential LLL-argument)
Conj. True (G., Warnke, 2020): corollary of our main packing result Implies $s_{r}\left(K_{3}\right)=\Theta\left(r^{2} \log r\right)$
- For technical reasons: use semi-random variation of Δ-free process

Minimum degree of minimal r-Ramsey graphs (Burr, Erdős, Lovász 1976)
$s_{r}\left(K_{k}\right):=\min _{G \in \mathcal{M}_{r}\left(K_{k}\right)} \delta(G)$

- $c r^{2} \log r \leq s_{r}\left(K_{3}\right) \leq C r^{2}(\log r)^{2}$ by FGLPS (2015)

Conjecture (Fox, Grinshpun, Liebenau, Person, Szabo, 2015)

$s_{r}\left(K_{3}\right)=O\left(r^{2} \log r\right)$

- They suggested to pack G_{i} sequentially via Δ-free process (their weaker upper bound relies on sequential LLL-argument)

Conj. True (G., Warnke, 2020): corollary of our main packing result Implies $s_{r}\left(K_{3}\right)=\Theta\left(r^{2} \log r\right)$

- For technical reasons: use semi-random variation of Δ-free process

Glimpse of the proof

Main-Technical-Result: find random-like Δ-free subgraph $G \subseteq H$
Let $\varrho:=\sqrt{\beta(\log n) / n}$ and $s:=C_{\varepsilon} \sqrt{n \log n}$. If $H \subseteq K_{n}$ is such that

$$
e_{H}(A, B) \geq \varepsilon|A||B|
$$

for all disjoint sets A, B of size s, then we can find Δ-free $G \subseteq H$ with

$$
e_{G}(A, B)=(1 \pm \delta) \varrho e_{H}(A, B)
$$

for all disjoint A, B of size s.

Main-Technical-Result: find random-like Δ-free subgraph $G \subseteq H$

Let $\varrho:=\sqrt{\beta(\log n) / n}$ and $s:=C_{\varepsilon} \sqrt{n \log n}$. If $H \subseteq K_{n}$ is such that

$$
e_{H}(A, B) \geq \varepsilon|A||B|
$$

for all disjoint sets A, B of size s, then we can find Δ-free $G \subseteq H$ with

$$
e_{G}(A, B)=(1 \pm \delta) \varrho e_{H}(A, B)
$$

for all disjoint A, B of size s.

Implies packing result: (maintaining $e_{H_{i}}(A, B)$ bounds inductively)

- Start with $H_{0}=K_{n}$
- Sequentially choose $G_{i} \subseteq H_{i}$ and set $H_{i+1}=H_{i} \backslash G_{i}$

$$
e_{H_{i}}(A, B)=(1-(1 \pm \delta) \varrho)^{i}|A||B|
$$

- Stop when $e_{H_{l}}(A, B) \approx \varepsilon|A||B|$ holds

Glimpse of the proof

Main-Technical-Result: find random-like Δ-free subgraph $G \subseteq H$

Let $\varrho:=\sqrt{\beta(\log n) / n}$ and $s:=C_{\varepsilon} \sqrt{n \log n}$. If $H \subseteq K_{n}$ is such that

$$
e_{H}(A, B) \geq \varepsilon|A||B|
$$

for all disjoint sets A, B of size s, then we can find Δ-free $G \subseteq H$ with

$$
e_{G}(A, B)=(1 \pm \delta) \varrho e_{H}(A, B)
$$

for all disjoint A, B of size s.

Proof based on semi-random variation of Δ-free process:

- Do not require degree/codegree regularity of H
- 'Self-stabilization' mechanism built into process (to control errors)
- Tools: Bounded-Differences-Ineq. and Upper-Tail-Ineq. of Warnke

Semi-random construction of \triangle-free subgraph

To construct triangle-free T_{\jmath}, we iteratively keep track of

- E_{j} : "random" set of edges
- $T_{j} \subseteq E_{j}: \Delta$-free and $\left|T_{j}\right| \approx\left|E_{j}\right|$
- $O_{j} \subseteq\left\{\right.$ all $e \notin E_{j}$ that don't form a Δ with any two edges of $\left.E_{j}\right\}$

Closed edge

Idea of each step

To construct triangle-free T_{\jmath}, we iteratively keep track of

- E_{j} : "random" set of edges
- $T_{j} \subseteq E_{j}: \Delta$-free and $\left|T_{j}\right| \approx\left|E_{j}\right|$
- $O_{j} \subseteq\left\{\right.$ all $e \notin E_{j}$ that don't form a Δ with any two edges of $\left.E_{j}\right\}$

Closed edge

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free
(3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$

Random edge-set Γ_{i+1} and edge-set E_{j+1}

- E_{j} : "random" set of edges
- $T_{j} \subseteq E_{j}: \Delta$-free and $\left|T_{j}\right| \approx\left|E_{j}\right|$
- $O_{j} \subseteq\left\{\right.$ all $e \notin E_{j}$ that don't form a Δ with any two edges of $\left.E_{j}\right\}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free (3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$

- Start with $O_{0}=E(H)$ for the dense host graph $H . E_{0}=T_{0}=\emptyset$

Random edge-set Γ_{i+1} and edge-set E_{j+1}

- $E_{j}:$ "random" set of edges
- $T_{j} \subseteq E_{j}: \Delta$-free and $\left|T_{j}\right| \approx\left|E_{j}\right|$
- $O_{j} \subseteq\left\{\right.$ all $e \notin E_{j}$ that don't form a Δ with any two edges of $\left.E_{j}\right\}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free
(3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$

- Start with $O_{0}=E(H)$ for the dense host graph $H . E_{0}=T_{0}=\emptyset$

Definition of Γ_{j+1} and E_{j+1}

- $\Gamma_{j+1} \subseteq O_{j}: p$-random subset of O_{j}
- $E_{j+1}=E_{j} \cup \Gamma_{j+1}$

Random edge-set Γ_{i+1} and edge-set E_{j+1}

- $E_{j}:$ "random" set of edges
- $T_{j} \subseteq E_{j}: \Delta$-free and $\left|T_{j}\right| \approx\left|E_{j}\right|$
- $O_{j} \subseteq\left\{\right.$ all $e \notin E_{j}$ that don't form a Δ with any two edges of $\left.E_{j}\right\}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free
(3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$

- Start with $O_{0}=E(H)$ for the dense host graph $H . E_{0}=T_{0}=\emptyset$

Definition of Γ_{j+1} and E_{j+1}

- $\Gamma_{j+1} \subseteq O_{j}: p$-random subset of O_{j}
- $E_{j+1}=E_{j} \cup \Gamma_{j+1}$

Why can we ensure $\left|\Gamma_{j+1}^{\prime}\right| \approx\left|\Gamma_{j+1}\right|$?

- Γ_{j+1} small \Rightarrow very few new Δ 's created in $E_{j} \cup \Gamma_{j+1}$
- hence removal of few edges destroys all new Δ 's

Finding Δ-free $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free (3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$
$E_{j} \cup \Gamma_{j+1}$ can create new Δ 's:

Bad pairs

Bad triples

Alteration to destroy new Δ 's: $\Gamma_{j+1}^{\prime}=$
 $\mathcal{D}_{j+1}=$ edges of a maximal edge-disjoint collection of bad pairs/triples

- easier to analyze than removing ≥ 1 edge from each new \triangle
\square

Finding Δ-free $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free
(3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$
$E_{j} \cup \Gamma_{j+1}$ can create new Δ 's:

Bad pairs

Bad triples

Alteration to destroy new Δ 's: $\Gamma_{j+1}^{\prime}=\Gamma_{j+1} \backslash \mathcal{D}_{j+1}$
$\mathcal{D}_{j+1}=$ edges of a maximal edge-disjoint collection of bad pairs/triples

- easier to analyze than removing ≥ 1 edge from each new Δ
- $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ is Δ-free by maximality of \mathcal{D}_{j+1}

Open edges: effect of closed edges

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free
(3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$

Updating "open edges" that can still be added
$O_{j+1}=O_{j} \backslash\left(\Gamma_{j+1} \cup\{\right.$ "closed edges" $\} \cup\{$ extra edges for technical reasons $\left.\}\right)$.
"Closed edge" forms a triangle with two edges in $E_{j+1}=E_{j} \cup \Gamma_{j+1}$.

Closed edge

Open edges: self-stabilization mechanism

Updating " open edges" that can still be added
$O_{j+1}=O_{j} \backslash\left(\Gamma_{j+1} \cup\{\right.$ "closed edges" $\} \cup\{$ extra random edges $\left.\}\right)$.

Open edges: self-stabilization mechanism

Updating "open edges" that can still be added
$O_{j+1}=O_{j} \backslash\left(\Gamma_{j+1} \cup\{\right.$ "closed edges" $\} \cup\{$ extra random edges $\left.\}\right)$.
$Y_{e}(j)=\#$ edges whose addition to E_{j+1} will close e

adding any of green edges closes $e=\{u, v\}$

Self-stabilization: make \mathbb{P} (closed) equal for all e (independent of history)
$\mathbb{P}(e$ not closed in next step of iteration $) \approx(1-p)^{\left|Y_{e}(j)\right|}$
$\mathbb{P}(e$ not $($ closed or extra edge $)) \approx(1-p)^{\left|Y_{e}(j)\right|}\left(1-q_{e}\right) \stackrel{!}{=}$ same for all e

To construct triangle-free T_{J}, we iteratively keep track of

- E_{j} : "random" set of edges
- $T_{j} \subseteq E_{j}: \Delta$-free and $\left|T_{j}\right| \approx\left|E_{j}\right|$
- $O_{j} \subseteq\left\{\right.$ all $e \notin E_{j}$ that don't form a Δ with any two edges of $\left.E_{j}\right\}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_{j}$
(2) Alteration: find $\Gamma_{j+1}^{\prime} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1}=T_{j} \cup \Gamma_{j+1}^{\prime}$ remains Δ-free (3) Update $O_{j+1} \subseteq O_{j} \backslash \Gamma_{j+1}$

Number of edges between two large sets

Assume we can show

$$
\left|O_{j}(A, B)\right| \approx q_{j}|A||B|, \text { where } q_{j}=\psi^{\prime}(j \sigma), \text { for } O_{0}=H=K_{n} .
$$

Use $p=\sigma / \sqrt{n}$, then we can approximate $\left|T_{J}(A, B)\right|$

Number of edges between two large sets

Assume we can show

$$
\left|O_{j}(A, B)\right| \approx q_{j}|A||B|, \text { where } q_{j}=\Psi^{\prime}(j \sigma), \text { for } O_{0}=H=K_{n} .
$$

Use $p=\sigma / \sqrt{n}$, then we can approximate $\left|T_{J}(A, B)\right|$

$$
\begin{aligned}
\left|T_{J}(A, B)\right| & =\sum_{0 \leq j<J}\left|T_{j+1}(A, B) \backslash T_{j}\right| \approx \sum_{0 \leq j<J}\left|\Gamma_{j+1}(A, B)\right| \\
& \approx \sum_{0 \leq j<J} p\left|O_{j}(A, B)\right| \approx \frac{1}{\sqrt{n}} \sum_{0 \leq j<J} \sigma q_{j} \cdot|A||B| \\
& \approx \frac{1}{\sqrt{n}} \int_{0}^{J \sigma} \Psi^{\prime}(x) d x \cdot|A||B| \approx \frac{\Psi(J \sigma)}{\sqrt{n}}|A||B| \\
& \approx \frac{\sqrt{\beta(\log n)}}{\sqrt{n}}|A||B|=\varrho|A||B|
\end{aligned}
$$

A technical difficulty

Difficulty of tracking $\left|O_{j}(A, B)\right|$

Choosing one edge into Γ_{j+1} may cause large change of $\left|O_{j}(A, B)\right|$:

A technical difficulty

Difficulty of tracking $\left|O_{j}(A, B)\right|$

Choosing one edge into Γ_{j+1} may cause large change of $\left|O_{j}(A, B)\right|$:

G., Warnke (2020): almost packing of nearly optimal $R(3, t)$ graphs

Given $\varepsilon>0$, we find edge-disjoint graphs $\left(G_{i}\right)_{i \in \mathcal{I}}$ with $G_{i} \subseteq K_{n}$ such that (a) each G_{i} is Δ-free with $\alpha\left(G_{i}\right) \leq C_{\varepsilon} \sqrt{n \log n}$
(b) the union of the G_{i} contains $\geq(1-\varepsilon)\binom{n}{2}$ edges

Remarks

- Natural algorithmic packing version of Kim's $R(3, t)$ construction
- Establishes $s_{r}\left(K_{3}\right)=\Theta\left(r^{2} \log r\right)$ asymptotics conjectured by Fox et.al.

Questions

- Further applications of the K_{3}-free packing result?
- Generalization of packing-result to K_{k}-free graphs worth effort?

Reference

- He Guo, Lutz Warnke, Packing nearly optimal Ramsey $R(3, t)$ graphs, Combinatorica 40, 63-103 (2020)

