Packing nearly optimal Ramsey R(3, t) graphs

He Guo

Georgia Tech

Joint work with Lutz Warnke

Context of this talk

Ramsey number R(s, t)

R(s,t) :=minimum $n \in \mathbb{N}$ such that every red/blue edge-coloring of complete *n*-vertex graph K_n contains red K_s or blue K_t

- Major problem in combinatorics: determining asymptotics
- Testbed for new proof techniques/methods: Alteration, LLL, Concentration Ineq., Semi-Random, Differential Eq.

Celebrated Result (Ajtai-Komlós-Szemerédi 1980 + Kim 1995)

 $R(3,t) = \Theta(t^2/\log t)$

- Lower bound harder: Kim received Fulkerson Prize 1997
- $R(3,t) = \Omega(t^2/(\log t)^2)$ already by Erdős in 1961

Topic of this talk

Extension of Kim-result (implies asymptotics of other Ramsey parameter)

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- * Tight up to the constant: Ajtai-Komlós-Szemerédi (1980)
- * Lead to the right order of magnitude of Ramsey number R(3,t)
- Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

Both find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

 Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

Why this result is difficult?

Standard approach (alteration): in $G_{n,p}$, try to remove one edge of all Δ 's Facts: w.h.p.

•
$$\#$$
edges = $\Theta(n^2p)$
• $\#K_3$'s = $\Theta(n^3p^3) = \Theta(n^2p \cdot np^2) \ll \#$ edges $\Rightarrow p = \varepsilon/\sqrt{n}$
• Max ISET of $G_{n,n} \approx \frac{2\log n}{2} \stackrel{!}{=} C\sqrt{n} \cdot \log n \gg \sqrt{n\log n}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- Using (semi-random variation of) Δ -free process: greedily add random edges that do not close a Δ
- $\Delta\text{-free process:}$ add one random edge in each step

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- Using (semi-random variation of) Δ -free process: greedily add random edges that do not close a Δ
- $\Delta\text{-free process:}$ add one random edge in each step

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- Using (semi-random variation of) Δ -free process: greedily add random edges that do not close a Δ
- $\Delta\text{-free process:}$ add one random edge in each step

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- Using (semi-random variation of) Δ -free process: greedily add random edges that do not close a Δ
- $\Delta\text{-free process:}$ add one random edge in each step

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- Using (semi-random variation of) Δ -free process: greedily add random edges that do not close a Δ
- $\Delta\text{-free process:}$ add one random edge in each step

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

- Using (semi-random variation of) Δ -free process: greedily add random edges that do not close a Δ
- $\Delta\text{-free process:}$ add one random edge in each step

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

 Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ

Semi-random variation: add many random-like edges in each step

Main Result: packing nearly optimal R(3, t) graphs Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

 Using (semi-random variation of) Δ-free process: greedily add random edges that do not close a Δ

G., Warnke (2020): almost packing of nearly optimal R(3, t) graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in \mathcal{I}}$ with $G_i \subseteq K_n$ such that (a) each G_i is Δ -free with $\alpha(G_i) \leq C_{\varepsilon} \sqrt{n \log n}$ (b) the union of the G_i contains $\geq (1 - \varepsilon) \binom{n}{2}$ edges

- Using simple *polynomial-time randomized algorithm*: sequentially choose G_i via semi-random variation of Δ-free process
 - Start with $H_0 = K_n$
 - Find $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$ and repeat

G., Warnke (2020): almost packing of nearly optimal R(3, t) graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in \mathcal{I}}$ with $G_i \subseteq K_n$ such that (a) each G_i is Δ -free with $\alpha(G_i) \leq C_{\varepsilon}\sqrt{n\log n}$ (b) the union of the G_i contains $\geq (1 - \varepsilon) \binom{n}{2}$ edges

- Using simple *polynomial-time randomized algorithm*: sequentially choose *G_i* via semi-random variation of Δ-free process
 - Start with $H_0 = K_n$
 - Find $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$ and repeat

Motivation: why should we care?

- Natural packing extension of Kim's result
- Technical challenge: controlling errors over $\Theta(\sqrt{n/\log n})$ iterations
- Establishes Ramsey-Theory conjecture by Fox et.al. (cf. next slides)

Ramsey Theory with $r \ge 2$ colors

 $G \to (H)_r \iff$ any r-coloring of E(G) has monochromatic copy of H

Ramsey theory \triangleq studying properties of "*r*-Ramsey minimal graphs"

 $\mathcal{M}_r(H) := \text{all graphs } G \text{ that are } r\text{-Ramsey minimal for } H \\ (\text{i.e., } G \to (H)_r \text{ and } G' \not\to (H)_r \text{ for all } G' \subsetneq G)$

•
$$\min_{G \in \mathcal{M}_r(K_k)} v(G) = \text{Ramsey number}$$

• $\min_{G \in \mathcal{M}_r(K_k)} e(G) = \text{Size Ramsey number}$

Minimum degree of *r*-Ramsey minimal graphs (Burr, Erdős, Lovász 1976) $s_r(H) := \min_{G \in \mathcal{M}_r(H)} \delta(G)$

- $s_2(K_k) = (k-1)^2$: Burr, Erdős, Lovász (1976)
- $s_2(H) = 2\delta(H) 1$: for many bipartite H (trees, $K_{a,b}$, etc) Fox, Lin (2006) + Szabó, Zumstein, Zürcher (2010)

• $s_r(K_k) = \tilde{\Theta}_k(r^2)$: Fox, Grinshpun, Liebenau, Person, Szabó (2015)

Ramsey Conjecture of Fox et.al.

Minimum degree of minimal *r*-Ramsey graphs (Burr, Erdős, Lovász 1976)

 $s_r(K_k) := \min_{G \in \mathcal{M}_r(K_k)} \delta(G)$

•
$$cr^2\log r \leq s_r(K_3) \leq Cr^2(\log r)^2$$
 by FGLPS (2015)

Conjecture (Fox, Grinshpun, Liebenau, Person, Szabo, 2015)

 $s_r(K_3) = O(r^2 \log r)$

 They suggested to pack G_i sequentially via Δ-free process (their weaker upper bound relies on sequential LLL-argument)

Conj. True (G., Warnke, 2020): corollary of our main packing result Implies $s_r(K_3) = \Theta(r^2 \log r)$

• For technical reasons: use *semi-random variation* of Δ -free process

Minimum degree of minimal *r*-Ramsey graphs (Burr, Erdős, Lovász 1976) $s_r(K_k) := \min_{G \in \mathcal{M}_r(K_k)} \delta(G)$

•
$$cr^2\log r \leq s_r(K_3) \leq Cr^2(\log r)^2$$
 by FGLPS (2015)

Conjecture (Fox, Grinshpun, Liebenau, Person, Szabo, 2015)

 $s_r(K_3) = O(r^2 \log r)$

 They suggested to pack G_i sequentially via Δ-free process (their weaker upper bound relies on sequential LLL-argument)

Conj. True (G., Warnke, 2020): corollary of our main packing result Implies $s_r(K_3) = \Theta(r^2 \log r)$

• For technical reasons: use *semi-random variation* of Δ -free process

Glimpse of the proof

Main-Technical-Result: find random-like Δ -free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta(\log n)/n}$ and $s := C_{\varepsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_H(A,B) \geq \varepsilon |A||B|$

for all disjoint sets A, B of size s, then we can find Δ -free $G \subseteq H$ with

 $e_G(A,B) = (1 \pm \delta) \varrho e_H(A,B)$

for all disjoint A, B of size s.

Glimpse of the proof

Main-Technical-Result: find random-like Δ -free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta(\log n)/n}$ and $s := C_{\varepsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_H(A,B) \geq \varepsilon |A||B|$

for all disjoint sets A, B of size s, then we can find Δ -free $G \subseteq H$ with

 $e_G(A,B) = (1 \pm \delta) \varrho e_H(A,B)$

for all disjoint A, B of size s.

Implies packing result: (maintaining $e_{H_i}(A, B)$ bounds inductively)

- Start with $H_0 = K_n$
- Sequentially choose $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$

$$e_{H_i}(A,B) = \left(1 - (1 \pm \delta)\varrho\right)^i |A||B|$$

• Stop when $e_{H_l}(A,B) \approx \varepsilon |A||B|$ holds

Main-Technical-Result: find random-like Δ -free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta(\log n)/n}$ and $s := C_{\varepsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_{H}(A,B) \geq \varepsilon |A||B|$

for all disjoint sets A, B of size s, then we can find Δ -free $G \subseteq H$ with

 $e_G(A,B) = (1 \pm \delta) \varrho e_H(A,B)$

for all disjoint A, B of size s.

Proof based on semi-random variation of Δ -free process:

- Do not require degree/codegree regularity of H
- 'Self-stabilization' mechanism built into process (to control errors)
- Tools: Bounded-Differences-Ineq. and Upper-Tail-Ineq. of Warnke

Semi-random construction of Δ -free subgraph

To construct triangle-free T_J , we iteratively keep track of

- *E_j*: "random" set of edges
- $T_j \subseteq E_j$: Δ -free and $|T_j| \approx |E_j|$
- $O_j \subseteq \{ all \ e \notin E_j \text{ that don't form a } \Delta \text{ with any two edges of } E_j \}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

Semi-random construction of Δ -free subgraph

To construct triangle-free T_J , we iteratively keep track of

- *E_j*: "random" set of edges
- $T_j \subseteq E_j$: Δ -free and $|T_j| \approx |E_j|$
- $O_j \subseteq \{ all \ e \not\in E_j \text{ that don't form a } \Delta \text{ with any two edges of } E_j \}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

Random edge-set Γ_{i+1} and edge-set E_{j+1}

- *E_j*: "random" set of edges
- $T_j \subseteq E_j$: Δ -free and $|T_j| \approx |E_j|$
- $O_j \subseteq \{ all \ e \notin E_j \text{ that don't form a } \Delta \text{ with any two edges of } E_j \}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

• Start with $O_0 = E(H)$ for the dense host graph H. $E_0 = T_0 = \emptyset$

Definition of Γ_{j+1} and E_{j+1}

- $\Gamma_{j+1} \subseteq O_j$: *p*-random subset of O_j
- $E_{j+1} = E_j \cup \Gamma_{j+1}$

Why can we ensure $|\Gamma'_{j+1}| \approx |\Gamma_{j+1}|$?

- Γ_{j+1} small \Rightarrow very few <u>new</u> Δ 's created in $E_j \cup \Gamma_{j+1}$
- \bullet hence removal of few edges destroys all $\underline{new}\ \Delta {}^{\prime}s$

Random edge-set Γ_{i+1} and edge-set E_{j+1}

- *E_j*: "random" set of edges
- $T_j \subseteq E_j$: Δ -free and $|T_j| \approx |E_j|$
- $O_j \subseteq \{ all \ e \notin E_j \text{ that don't form a } \Delta \text{ with any two edges of } E_j \}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

• Start with $O_0 = E(H)$ for the dense host graph H. $E_0 = T_0 = \emptyset$

Definition of Γ_{j+1} and E_{j+1}

•
$$\Gamma_{j+1} \subseteq O_j$$
 : *p*-random subset of O_j

• $E_{j+1} = E_j \cup \Gamma_{j+1}$

Why can we ensure $|\Gamma'_{i+1}| \approx |\Gamma_{j+1}|$?

- Γ_{j+1} small \Rightarrow very few <u>new</u> Δ 's created in $E_j \cup \Gamma_{j+1}$
- \bullet hence removal of few edges destroys all $\underline{new}\ \Delta {}^{\prime}s$

Random edge-set Γ_{i+1} and edge-set E_{j+1}

- *E_j*: "random" set of edges
- $T_j \subseteq E_j$: Δ -free and $|T_j| \approx |E_j|$
- $O_j \subseteq \{ all \ e \notin E_j \text{ that don't form a } \Delta \text{ with any two edges of } E_j \}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

• Start with $O_0 = E(H)$ for the dense host graph H. $E_0 = T_0 = \emptyset$

Definition of Γ_{j+1} and E_{j+1}

•
$$\Gamma_{j+1} \subseteq O_j$$
 : *p*-random subset of O_j

• $E_{j+1} = E_j \cup \Gamma_{j+1}$

Why can we ensure $|\Gamma'_{j+1}| \approx |\Gamma_{j+1}|$?

- Γ_{j+1} small \Rightarrow very few <u>new</u> Δ 's created in $E_j \cup \Gamma_{j+1}$
- \bullet hence removal of few edges destroys all $\underline{new}~\Delta\mbox{'s}$

Finding Δ -free $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

 $E_j \cup \Gamma_{j+1}$ can create <u>new</u> Δ 's:

Alteration to destroy new Δ 's: $\Gamma'_{j+1} = \Gamma_{j+1} \setminus \mathcal{D}_{j+1}$

 $\mathcal{D}_{j+1} =$ edges of a maximal edge-disjoint collection of bad pairs/triples

• easier to analyze than removing ≥ 1 edge from each <u>new</u> Δ

•
$$T_{j+1} = T_j \cup \Gamma'_{j+1}$$
 is Δ -free by maximality of \mathcal{D}_{j+1}

Finding Δ -free $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

 $E_j \cup \Gamma_{j+1}$ can create <u>new</u> Δ 's:

Alteration to destroy new Δ 's: $\Gamma'_{j+1} = \Gamma_{j+1} \setminus D_{j+1}$

 $\mathcal{D}_{j+1} = edges$ of a maximal edge-disjoint collection of bad pairs/triples

easier to analyze than removing ≥ 1 edge from each <u>new</u> Δ
*T*_{i+1} = *T*_i ∪ Γ'_{i+1} is Δ-free by maximality of *D*_{i+1}

Open edges: effect of closed edges

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

Updating "open edges" that can still be added

 $\textit{O}_{j+1} = \textit{O}_j \setminus (\Gamma_{j+1} \cup \{\text{"closed edges"}\} \cup \{\text{extra edges for technical reasons}\}).$

"Closed edge" forms a triangle with two edges in $E_{j+1} = E_j \cup \Gamma_{j+1}$.

Open edges: self-stabilization mechanism

Updating "open edges" that can still be added

 $\textit{O}_{j+1} = \textit{O}_{j} \setminus (\Gamma_{j+1} \cup \{\text{"closed edges"}\} \cup \{\text{extra random edges}\}).$

Open edges: self-stabilization mechanism

Updating "open edges" that can still be added $O_{j+1} = O_j \setminus (\Gamma_{j+1} \cup \{\text{"closed edges"}\} \cup \{\text{extra random edges}\}).$

 $Y_e(j) = \#$ edges whose addition to E_{j+1} will close e

adding any of green edges closes
$$e = \{u, v\}$$

Self-stabilization: make $\mathbb{P}(closed)$ equal for all e (independent of history)

$$\begin{split} \mathbb{P}(e \text{ not closed in next step of iteration}) &\approx (1-p)^{|Y_e(j)|} \\ \mathbb{P}(e \text{ not (closed or extra edge)}) &\approx (1-p)^{|Y_e(j)|} (1-q_e) \stackrel{!}{=} \text{same for all } e \end{split}$$

Semi-random construction of Δ -free subgraph

To construct triangle-free T_J , we iteratively keep track of

- *E_j*: "random" set of edges
- $T_j \subseteq E_j$: Δ -free and $|T_j| \approx |E_j|$
- $O_j \subseteq \{ all \ e \notin E_j \text{ that don't form a } \Delta \text{ with any two edges of } E_j \}$

Idea of each step

(1) Generate few random edges $\Gamma_{j+1} \subseteq O_j$ (2) Alteration: find $\Gamma'_{j+1} \subseteq \Gamma_{j+1}$ s.t. $T_{j+1} = T_j \cup \Gamma'_{j+1}$ remains Δ -free (3) Update $O_{j+1} \subseteq O_j \setminus \Gamma_{j+1}$

Number of edges between two large sets

Assume we can show

$$O_j(A, B)| \approx q_j |A||B|$$
, where $q_j = \Psi'(j\sigma)$, for $O_0 = H = K_n$.

Use $p = \sigma / \sqrt{n}$, then we can approximate $|T_J(A, B)|$

Number of edges between two large sets

Assume we can show

$$|O_j(A,B)| pprox q_j |A||B|$$
, where $q_j = \Psi'(j\sigma)$, for $O_0 = H = K_n$.

Use $p = \sigma / \sqrt{n}$, then we can approximate $|T_J(A, B)|$

$$\begin{aligned} |T_J(A,B)| &= \sum_{0 \le j < J} |T_{j+1}(A,B) \setminus T_j| \approx \sum_{0 \le j < J} |\Gamma_{j+1}(A,B)| \\ &\approx \sum_{0 \le j < J} p|O_j(A,B)| \approx \frac{1}{\sqrt{n}} \sum_{0 \le j < J} \sigma q_j \cdot |A||B| \\ &\approx \frac{1}{\sqrt{n}} \int_0^{J\sigma} \Psi'(x) dx \cdot |A||B| \approx \frac{\Psi(J\sigma)}{\sqrt{n}} |A||B| \\ &\approx \frac{\sqrt{\beta}(\log n)}{\sqrt{n}} |A||B| = \varrho |A||B| \end{aligned}$$

A technical difficulty

Difficulty of tracking $|O_j(A, B)|$

Choosing one edge into Γ_{j+1} may cause large change of $|O_j(A, B)|$:

A technical difficulty

Difficulty of tracking $|O_j(A, B)|$

Choosing one edge into Γ_{j+1} may cause large change of $|O_j(A, B)|$:

Summary

G., Warnke (2020): almost packing of nearly optimal R(3, t) graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in \mathcal{I}}$ with $G_i \subseteq K_n$ such that (a) each G_i is Δ -free with $\alpha(G_i) \leq C_{\varepsilon}\sqrt{n\log n}$ (b) the union of the G_i contains $\geq (1 - \varepsilon) \binom{n}{2}$ edges

Remarks

- Natural algorithmic packing version of Kim's R(3, t) construction
- Establishes $s_r(K_3) = \Theta(r^2 \log r)$ asymptotics conjectured by Fox et.al.

Questions

- Further applications of the K_3 -free packing result?
- Generalization of packing-result to K_k -free graphs worth effort?

Reference

• He Guo, Lutz Warnke, *Packing nearly optimal Ramsey R*(3, *t*) *graphs*, Combinatorica **40**, 63–103 (2020)