Packing Nearly Optimal Ramsey $R(3, t)$ Graphs

He Guo and Lutz Warnke
ACO Math, Georgia Tech

Abstract/Summary

- Previous work: Kim/Bohman construct one nearly optimal $R(3, t)$ graph via (semi-random) triangle-free process
- Our contribution: We approximately decompose K_{n} into nearly optimal $R(3, t)$ graphs via iterative semi-random Δ-free process
- Our application: We solve Ramsey-Conjecture by Fox et al. (determine order of Ramsey-type parameter of Burr-Erdős-Lovász from 1976)

Kim (1995), Bohman (2008): one nearly optimal $R(3, t)$ graph

They both find an n-vertex graph $G \subseteq K_{n}$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Kim/Bohman use (semi-random) Δ-free process
- Δ-free process

In each step: add one random edge that does not close a Δ

- Semi-random variation of Δ-free process (Rödl nibble type) In each step: add "many" random-like edges that do not close a Δ
G., Warnke (2020): almost packing of nearly optimal $R(3, t)$ graphs

Given $\epsilon>0$, we find edge-disjoint $\left(G_{i}\right)_{i \in \mathcal{I}}$ with $G_{i} \subseteq K_{n}$ such that (a) each n-vertex graph G_{i} is Δ-free with $\alpha\left(G_{i}\right) \leq C_{\epsilon} \sqrt{n \log n}$
(b) $\left|\bigcup_{i \in \mathcal{I}} E\left(G_{i}\right)\right| \geq(1-\epsilon)\binom{n}{2}$

- Via simple polynomial-time randomized algorithm: Sequentially choose G_{i} via semi-random variation of Δ-free process
- Main technical challenge:

Controlling errors over $\Theta(\sqrt{n / \log n})$ iterations of the process

Proof: High-level Strategy/Ideas

Main technical result: find random-like Δ-free subgraph

Let $p:=\sqrt{\beta(\log n) / n}$ and $s:=C_{\epsilon} \sqrt{n \log n}$. If $H \subseteq K_{n}$ is such that

$$
e_{H}(A, B) \geq \epsilon|A||B|
$$

for all disjoint sets A, B of size s, then we can find Δ-free $G \subseteq H$ with
$e_{G}(A, B)=(1 \pm \delta) p e_{H}(A, B)$
for all disjoint sets A, B of size s.

Proof based on semi-random variation of Δ-free process:

- Crucial that we do not require degree/codegree regularity of H
- "Self-stabilization" mechanism built into process (to control errors)
- One-sided error estimates (only track large-sets two-sided)
- Tools: Bounded-Differences-Ineq., and Upper-Tail-Ineq. of Warnke

Algorithm for packing result: (maintain $e_{H_{i}}(A, B)$ bounds inductively)

- Start with $H_{0}=K_{n}$
- Sequentially choose $G_{i} \subseteq H_{i}$ and set $H_{i+1}=H_{i} \backslash G_{i}$, noting

$$
e_{H_{i}}(A, B)=(1-(1 \pm \delta) p)^{i}|A||B|
$$

- Stop when $e_{H_{I}}(A, B) \approx \epsilon|A||B|$ holds

Application: Solve Ramsey-Conjecture of Fox et al.

Ramsey-Definitions for $r \geq 2$ colors

- $\mathbf{G} \rightarrow\left(\mathbf{K}_{\mathbf{k}}\right)_{\mathbf{r}}$ if any r-coloring of $E(G)$ has monochromatic copy of K_{k}
- $\mathcal{M}(\mathbf{k}, \mathbf{r}):=$ all graphs G that are r-Ramsey minimal for K_{k}
(i.e., $G \rightarrow\left(K_{k}\right)_{r}$ and $G^{\prime} \nrightarrow\left(K_{k}\right)_{r}$ for all $G^{\prime} \subsetneq G$)

Classical Ramsey-Parameters

- $\min _{G \in \mathcal{M}(k, 2)} v(G)=$ Ramsey number $R(k)$
- $\min _{G \in \mathcal{M}(k, 2)} e(G)=$ Size Ramsey number $\hat{R}(k)$

Minimum degree version (Burr-Erd

- $\min _{G \in \mathcal{M}(k, r)} \delta(G)=: s(k, r)$

Previous Results

- $s(k, 2)=(k-1)^{2}$: Burr-Erdős-Lovász (1976)
- $s(k, r)=\tilde{\Theta}_{k}\left(r^{2}\right):$ Fox-Grinshpun-Liebenau-Person-Szabó (2015)

Fox-Grinshpun-Liebenau-Person-Szabó (JCTB, 2015)

$$
c r^{2} \log r \leq s(3, r) \leq C r^{2}(\log r)^{2}
$$

- They optimized their $s(k, r)=\tilde{\Theta}_{k}\left(r^{2}\right)$ bounds for $k=3$
- Upper bound: they pack G_{i} sequentially via LLL-argument

Conjecture (Fox-Grinshpun-Liebenau-Person-Szabó, 2015)

$$
s(3, r)=O\left(r^{2} \log r\right)
$$

- Hope: maybe can pack G_{i} sequentially via Δ-free process?
- For technical reasons (to make error-analysis tractable): We pack G_{i} sequentially via semi-random Δ-free process
G., Warnke (2020): our packing result implies

$$
s(3, r)=\Theta\left(r^{2} \log r\right)
$$

