Packing Nearly Optimal Ramsey R(3, t) **Graphs**

He Guo and Lutz Warnke ACO Math, Georgia Tech

ABSTRACT/SUMMARY

- <u>Previous work</u>: Kim/Bohman construct one nearly optimal R(3,t) graph via (semi-random) triangle-free process
- Our contribution: We approximately decompose K_n into nearly optimal R(3,t) graphs via iterative semi-random Δ -free process
- Our application: We solve Ramsey-Conjecture by Fox et al. (determine order of Ramsey-type parameter of Burr-Erdős-Lovász from 1976)

Kim (1995), Bohman (2008): one nearly optimal R(3,t) graph

They both find an *n*-vertex graph $G \subseteq K_n$ such that *G* is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$ **G.**, Warnke (2020): almost packing of nearly optimal R(3, t) graphs

Given $\epsilon > 0$, we find edge-disjoint $(G_i)_{i \in \mathcal{I}}$ with $G_i \subseteq K_n$ such that

• Kim/Bohman use (semi-random) Δ -free process

• Δ -free process

In each step: add one random edge that does not close a Δ

• Semi-random variation of Δ -free process (Rödl nibble type) In each step: add "many" random-like edges that do not close a Δ

(a) each *n*-vertex graph G_i is Δ -free with $\alpha(G_i) \leq C_{\epsilon} \sqrt{n \log n}$ (b) $|\bigcup_{i \in \mathcal{I}} E(G_i)| \ge (1 - \epsilon) \binom{n}{2}$

- Via simple polynomial-time randomized algorithm: Sequentially choose G_i via semi-random variation of Δ -free process
- Main technical challenge: Controlling errors over $\Theta(\sqrt{n/\log n})$ iterations of the process

PROOF: HIGH-LEVEL STRATEGY/IDEAS

Main technical result: find random-like Δ -free subgraph $G \subseteq H$

Let $p := \sqrt{\beta(\log n)/n}$ and $s := C_{\epsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_H(A, B) \ge \epsilon |A||B|$

for all disjoint sets *A*, *B* of size *s*, then we can find Δ -free $G \subseteq H$ with

 $e_G(A, B) = (1 \pm \delta) p e_H(A, B)$

for all disjoint sets *A*, *B* of size *s*.

$e_H(A,B) \ge \epsilon |A||B|$

Proof based on semi-random variation of Δ **-free process:**

- Crucial that we do not require degree/codegree regularity of H
- "Self-stabilization" mechanism built into process (to control errors)
- One-sided error estimates (only track large-sets two-sided)
- Tools: Bounded-Differences-Ineq., and Upper-Tail-Ineq. of Warnke

Algorithm for packing result: (maintain $e_{H_i}(A, B)$ bounds inductively)

- Start with $H_0 = K_n$
- Sequentially choose $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$, noting $e_{H_i}(A, B) = (1 - (1 \pm \delta)p)^i |A| |B|$
- Stop when $e_{H_I}(A, B) \approx \epsilon |A||B|$ holds

APPLICATION: SOLVE RAMSEY-CONJECTURE OF FOX ET AL.

Ramsey-Definitions for $r \ge 2$ **colors**

- $\mathbf{G} \to (\mathbf{K}_k)_r$ if any *r*-coloring of E(G) has monochromatic copy of K_k
- $\mathcal{M}(\mathbf{k}, \mathbf{r}) :=$ all graphs *G* that are *r*-Ramsey minimal for K_k (i.e., $G \to (K_k)_r$ and $G' \not\to (K_k)_r$ for all $G' \subsetneq G$)

Classical Ramsey-Parameters

• $\min_{G \in \mathcal{M}(k,2)} v(G) =$ Ramsey number R(k)

Fox-Grinshpun-Liebenau-Person-Szabó (JCTB, 2015)

 $cr^2 \log r \le s(3, r) \le Cr^2 (\log r)^2$

- They optimized their $s(k,r) = \tilde{\Theta}_k(r^2)$ bounds for k = 3
- Upper bound: they pack G_i sequentially via LLL-argument

Conjecture (Fox-Grinshpun-Liebenau-Person-Szabó, 2015)

 $\min_{G \in \mathcal{M}(k,2)} e(G) =$ Size Ramsey number $\hat{R}(k)$

• $\min_{G \in \mathcal{M}(k,r)} \delta(G) =: s(k,r)$

Previous Results

- $s(k, 2) = (k 1)^2$: Burr-Erdős-Lovász (1976)
- $s(k,r) = \tilde{\Theta}_k(r^2)$: Fox-Grinshpun-Liebenau-Person-Szabó (2015)

 $s(3,r) = O(r^2 \log r)$

- Hope: maybe can pack G_i sequentially via Δ -free process?
- For technical reasons (to make error-analysis tractable): We pack G_i sequentially via *semi-random* Δ -free process

G., Warnke (2020): our packing result implies

 $s(3,r) = \Theta(r^2 \log r)$

Reference: He Guo and Lutz Warnke, Packing nearly optimal Ramsey R(3,t) graphs, Combinatorica 40, 63–103 (2020)