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Abstract

A generalization of the famous Caccetta–Häggkvist conjecture, suggested by Aharoni [2], is
that any family F = (F1, . . . , Fn) of sets of edges in Kn, each of size k, has a rainbow cycle of
length at most dn

k
e. In [3, 1] it was shown that asymptotically this can be improved to O(logn)

if all sets are matchings of size 2, or all are triangles. We show that the same is true in the
mixed case, i.e., if each Fi is either a matching of size 2 or a triangle. We also study the case
that each Fi is a matching of size 2 or a single edge, or each Fi is a triangle or a single edge,
and in each of these cases we determine the threshold proportion between the types, beyond
which the rainbow girth goes from linear to logarithmic.
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1 Introduction

The directed girth dgirth(G) of a digraph G is the minimal length of a directed cycle in it (∞ if
there is no directed cycle). A famous conjecture of Caccetta and Häggkvist [5] (below — CHC)
states that any digraph G on n vertices satisfies dgirth(G) ≤ d n

δ+(G)e, where δ+(G) is the minimum

out-degree of G. See [6, 8, 9, 11] for progress on this problem. In particular it has been shown that
(a) The CHC is true if n ≥ 2δ+(G)2 − 3δ+(G) + 1 [12], and
(b) dgirth(G) ≤ n/δ+(G) + 73 for all G [13].
In [2] a possible generalization of CHC was suggested. Given a family F = (F1, . . . , Fm) of

sets of edges, a set F of edges is said to be rainbow for F if each of the edges in F is taken from
a distinct Fi (if the sets Fi are disjoint, this means that |F ∩ Fi| ≤ 1 for each i). The rainbow
girth rgirth(F) of F is the minimal length of a rainbow cycle with respect to F .

Conjecture 1. For any family F = (F1, . . . , Fn) of subsets of E(Kn) such that |Fi| = k for
each 1 ≤ i ≤ n, we have rgirth(F) ≤ dn/ke.

We may clearly assume that the sets Fi are disjoint, since otherwise there is a rainbow digon,
meaning that the rainbow girth is 2. Given F = (F1, . . . , Fm) with Fi 6= ∅ for each i ∈ [m] and
∪mi=1Fi = E(G) for some graph G, we shall refer to F as an edge coloring of G, the indices i ∈ [m]
as colors, the sets Fi as color classes, and rgirth(F) as the rainbow girth of G with respect to the
edge coloring F .

∗Faculty of Mathematics, Technion, Haifa 32000, Israel. E-mail: hguo@campus.technion.ac.il.

1



Devos et. al. [7] proved Conjecture 1 for k = 2. In [1] a stronger version of the conjecture was
proved, in which the sets Fi are of size 1 or 2. In [10] it was shown that the order of magnitude
is right: there exists a constant C > 0 such that for any k, n and F satisfying the assumption
of Conjecture 1, we have rgirth(F) ≤ Cn/k. An explanation why Conjecture 1 implies the CHC
can be found in [3] and [1].

All known extreme examples for Conjecture 1 are obtained from those of the CHC, taking the
color classes as stars. This suggests looking at the case when the sets of edges are not stars, and
trying to improve the upper bound on the girth. Indeed, in [3], it is proved that if an n-vertex
graph is edge-colored by n colors such that each color class is a matching of size 2, then the rainbow
girth is O(log n), asymptotically improving the conclusion of the conjecture.

A set of edges not containing a matching of size 2 is either a star or a triangle, hence the next
interesting case is that of families of triangles. In [1], it is proved that a family of n triangles in
Kn has rainbow girth O(log n). Furthermore, it was shown there that log n is the right order of
magnitude: an n-vertex graph is constructed, consisting of n edge-disjoint triangles whose rainbow
girth is Ω(log n).

In this note we fine-tune the above results, by showing that the rainbow girth is O(log n) in the
mixed case that each Fi is either a matching of size 2 or a triangle. We also study the case that
each Fi is a matching of size 2 or a single edge, or each Fi is a triangle or a single edge, and in each
of these cases we determine the threshold proportion between the types, beyond which the rainbow
girth goes from linear to logarithmic.

2 Graph theoretical and probabilistic tools

As in [10, 3], a key ingredient in the proofs is a result by Bollobás and Szemerédi [4] on the girth
of sparse graphs.

Theorem 2. For N ≥ 4 and k ≥ 2, every N -vertex graph with N + k edges has girth at most

2(N + k)

3k
(log2 k + log2 log2 k + 4).

We shall use two well-known concentration inequalities.

Theorem 3 (Chernoff). Let X be a binomial random variable Bin(n, p). For any t ≥ 0, we have

P(X ≥ EX + t) ≤ exp
(
− t2

2(EX + t/3)

)
.

Theorem 4 (Chebyshev). Let X be a random variable. For any t > 0, we have

P(|X − EX| ≥ t) ≤ VarX

t2
,

where VarX is the variance of X.
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3 Main results

3.1 Matchings and single edges

Theorem 5. For any α > 1/2, there exists C such that for any edge coloring F = (F1, . . . , Fn) of
an n-vertex graph G with Fi 6= ∅ for each i ∈ [n], if at least αn color classes in F are matchings of
size 2, then rgirth(F) ≤ C log n.

We shall need a slightly stronger result, which allows the number of size-two matchings to be
less than αn and the total number of color classes to be less than n.

Theorem 6. For any α > 1/2, there exist ξ = ξ(α) > 0 and C = C(α) such that the following
holds. Let G be an n-vertex graph and F = (F1, . . . , Fm) be an edge coloring of G. If F = FM tFE,
where

1. every Fi ∈ FM is a matching of size 2,

2. every Fi ∈ FE is a single edge,

3. |FM | ≥ (α− ξ)n and |FE | ≥ (1− α− ξ)n,

then rgirth(F) ≤ C log n.

Theorem 6 will follow from Theorem 2, and the following:

Theorem 7. For any α > 1/2, there exist β, c > 0 such that for any large enough n, given an
n-vertex graph G and an edge coloring of G satisfying the assumption in Theorem 6, there exists a
subset S of V (G) of size at most βn containing a rainbow edge set of size at least (β + c)n.

Once this is proved, Theorem 6 follows by applying Theorem 2 with N = βn and k = cn.
In Section 3.1.1, we give a simplified proof of Theorem 6. But we still think the proof of Theo-

rem 6 via Theorem 7 involves some interesting techniques.
The idea used to prove Theorem 7 is choosing a random subset S of V (G) and considering

the induced subgraph G[S]. The crux of the argument is that the expected number of vertices
E|S| is less than the expected number of rainbow edges in G[S], and their difference is linear in n.
Furthermore, these two random numbers are concentrated around their expectations, which follows
from the concentration inequalities in Section 2.

Theorem 2.8 of [3] states that for any γ > 3
√

6/8 ≈ 0.9186 and n-vertex graph with an edge
coloring with at least γn colors, if each color class is a matching of size 2, then the rainbow girth
is O(log n). For completeness, we add an alternative proof of this statement in the Appendix A,
which was observed by Michael Krivelevich.1 Note that in Theorem 6 we can take ξ(α) > 0
arbitrarily small. In particular, if α > 3

√
6/8, we can guarantee that α − ξ > 3

√
6/8. Therefore

here we may assume that α ≤ 3
√

6/8. Again since ξ can be chosen arbitrarily small, we may assume
that min{α− ξ, 1−α− ξ} ≥ 1/40 so that min{|FM |, |FE |} ≥ n/40. And without loss of generality,
we may assume that max{|FM |, |FE |} ≤ n.

First we claim that for p ∈ (0, 1) close enough to 1, we have

α(2p2 − p4) + (1− α)p2 > p. (1)

1The bound on γ is a bit weaker, but enough for our later use.
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In fact, when α = 1/2 + δ for some δ > 0, the above is equivalent to

(1/2 + δ)(2p− p3) + (1/2− δ)p > 1.

Writing p = 1− τ , we have

(1/2 + δ)(2p− p3) + (1/2− δ)p =
3

2
p+ δp− (

1

2
+ δ)p3

=
3

2
(1− τ) + δ(1− τ)− (

1

2
+ δ)(1− τ)3

= 1 + 2δτ + τ2(−3/2− 3δ + τ/2 + δτ),

which is greater than 1 for τ = τ(δ) > 0 small enough.
For any p ∈ (0, 1) close enough to 1 satisfying (1), there exist constants ε(α, p), ξ(α, p) > 0 small

enough so that
(1− ε)(α− ξ)(2p2 − p4) + (1− ε)(1− α− ξ)p2 > p. (2)

Fix 1/2 ≤ p < 1 and ε, ξ > 0 that satisfy (2).
A vertex v is called a heavy vertex if there are at least (ε2/106)n many rainbow edges, i.e., edges

in (∪FM ) ∪ (∪FE), incident to it. Let D be the set of all heavy vertices. Then

|D| ≤ (2 · 2|FM |+ 2|FE |)/((ε2/106)n) ≤ 6n/((ε2/106)n) ≤ 107/ε2. (3)

We construct a random vertex set
S := D ∪ (V \D)p

i.e., S contains the set D of heavy vertices and includes each vertex of V \D independently with
probability p.

Lemma 8. With high probability2, |S| ≤ np+ n2/3.

Proof. Note that by construction, |S| has the same probability distribution as |D|+Bin(n−|D|, p).
Set Z = Bin(n− |D|, p). Applying Chernoff’s bound (Theorem 3) and (3), we have

P(Z ≥ np+ n2/3 − |D|) ≤ P(Z ≥ EZ + n2/3 − |D|) ≤ exp(−nΩ(1)).

Therefore with high probability, |S| ≤ |D|+ Z ≤ np+ n2/3.

Lemma 9. With probability at least 0.9, the number of color classes in FM that have at least one
edge contained in S is at least (1− ε)|FM | · (2p2 − p4).

Proof. For Fi ∈ FM , let

Xi := 1{at least one edge in Fi is contained in S}

be the indicator random variable that some edge e in Fi is contained in S. Since each vertex is
included in S independently with probability at least p and Xi is an increasing random variable
with respect to the probability that a vertex is included in S, by inclusion-exclusion we have

EXi ≥ 2p2 − p4.

2An event holds with high probability if the probability of that event tends to 1 as n tends to infinity.
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Let
X :=

∑
Fi∈FM

Xi. (4)

We have
EX ≥ |FM | · (2p2 − p4). (5)

To prove the lemma, we shall apply Chebyshev’s inequality (Theorem 4). For this purpose we have
to estimate VarX. With a look at (4), we have

VarX = EX2 − (EX)2 =
∑

Fi,Fj∈FM

(EXiXj − EXiEXj). (6)

Note that if the matchings of the colors i, j are vertex-disjoint, then Xi and Xj are independent
and EXiXj − EXiEXj = 0.

Since the matchings in FM are disjoint, for every Fi ∈ FM , at most 6 =
(

4
2

)
matchings Fj ∈ FM

can have an edge contained in
⋃
Fi. This means that there exist at most 2 · 6n pairs (Fi, Fj) such

that an edge from Fj is contained in
⋃
Fi, or vice versa. Thus the contribution of such pairs to

VarX is at most 12n.
Apart from vertex-disjointness, there are two more possible forms of Fi ∪ Fj :
I. three connected components: one 2-path and two disjoint edges, or
II. two vertex-disjoint 2-paths.
Examine Case I. Let Fi = {a, b}, where a = {x, y}, b = {u, v}, and let Fj = {c, d}, where

c = {x, z} and d = {s, t}.
If x is a heavy vertex, then EXiXj −EXiEXj = 0. Indeed, since the events {a ⊆ S} = {y ∈ S},

{b ⊆ S}, {c ⊆ S} = {z ∈ S}, and {d ⊆ S} are mutually independent, we have

EXiEXj

=
(
P(a ⊆ S and b 6⊆ S) + P(a 6⊆ S and b ⊆ S) + P(a ⊆ S and b ⊆ S)

)
·
(
P(c ⊆ S and d 6⊆ S) + P(c 6⊆ S and d ⊆ S) + P(c ⊆ S and d ⊆ S)

)
=
(
P(a ⊆ S)P(b 6⊆ S) + P(a 6⊆ S)P(b ⊆ S) + P(a ⊆ S)P(b ⊆ S)

)
·
(
P(c ⊆ S)P(d 6⊆ S) + P(c 6⊆ S)P(d ⊆ S) + P(c ⊆ S)P(d ⊆ S)

)
=P(a, c ⊆ S and b, d 6⊆ S) + P(a, d ⊆ S and b, c 6⊆ S) + P(b, c ⊆ S and a, d 6⊆ S)

+ P(b, d ⊆ S and a, c 6⊆ S) + P(a, b, c ⊆ S and d 6⊆ S) + P(a, b, d ⊆ S and c 6⊆ S)

+ P(a, c, d ⊆ S and b 6⊆ S) + P(b, c, d ⊆ S and a 6⊆ S) + P(a, b, c, d ⊆ S)

=EXiXj .

If x is not a heavy vertex, the contribution to VarX for such (Fi, Fj) is at most 4 ·n · ε
2n

106 , since

there are at most n ways to choose Fi, four ways to choose x, and at most ε2n
106 ways to choose Fj .

In case II, let Fi = {a, b}, where a = {x, y}, b = {u, v}, and let Fj = {c, d}, where c = {x, z}
and d = {u, t}.

If both x and u are heavy vertices, then the events {a ⊆ S} = {y ∈ S}, {b ⊆ S} = {v ∈ S},
{c ⊆ S} = {z ∈ S}, and {d ⊆ S} = {t ∈ S} are mutually independent. Similarly to case I, we have

EXiXj −EXiEXj = 0. Otherwise the contribution to VarX for such (Fi, Fj) is at most 4 · n · ε
2n

106 .
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Summing, for n large enough (so that 12 ≤ 2ε2

106n) we have

VarX ≤ 12n+ 2 · 4 · n · ε
2n

106
≤ ε2n2

105
.

Since 1/2 ≤ p < 1, we have 2p2 − p4 ≥ 7/16. Applying Chebyshev’s inequality and using the
assumption |FM | ≥ n/40, we have

P(X ≤ (1− ε)|FM | · (2p2 − p4)) ≤ P(X ≤ EX − ε|FM | · (2p2 − p4))

≤ VarX

(ε|FM | · (2p2 − p4))2
≤ ε2n2

105ε2(n/40)2(7/16)2
≤ 1/10,

which completes the proof.

Lemma 10. With probability at least 0.9, the number of color classes in FE that are contained
in S is at least (1− ε)|FE | · p2.

Proof. For Fi ∈ FE , let
Yi := 1{Fi ⊆ S}

be the indicator random variable that the edge of color i is contained in S. Then EYi ≥ p2. Let

Y :=
∑

Fi∈FE

Yi.

We have
EY ≥ |FE | · p2. (7)

To prove the lemma, we shall apply Chebyshev’s inequality (Theorem 4). For this purpose we have
to estimate VarX. We have

VarY = EY 2 − (EY )2 =
∑

Fi,Fj∈FE

(EYiYj − EYiEYj). (8)

Note that if the edges of colors i, j are vertex-disjoint, then Yi and Yj are independent and EYiYj −
EYiEYj = 0.

Furthermore, if the edges of two distinct color classes Fi, Fj ∈ FE , say uv and uw, intersect at
a heavy vertex u that is in D, then EYiYj − EYiEYj = P(v, w ∈ S)− P(v ∈ S)P(w ∈ S) = 0.

Therefore besides the case Fi = Fj , the non-zero contribution to EY can only come from Fi, Fj
that the edges intersect at a non-heavy vertex. Note that by definition, such a non-heavy vertex is
incident to at most (ε2/106)n edges in ∪FE . Therefore there are at most 2 · |FE | · 2 · (ε2/106)n such
pairs (Fi, Fj).

Therefore using the assumption that |FE | ≥ n/40, for n large enough (so that 1 ≤ 4ε2

106n) we
have

VarY ≤ |FE |+ 4|FE |(ε2/106)n ≤ 8 · 40ε2

106
|FE | ·

n

40
≤ ε2

103
|FE |2.

Therefore by Chebyshev’s inequality and p ≥ 1/2, we have

P(Y ≤ |FE |·p2−ε|FE |·p2) ≤ P(Y ≤ EY −ε|FE |·p2) ≤ VarY

(ε|FE | · p2)2
≤ ε2|FE |2

103 · ε2|FE |2 · (1/2)4
≤ 1/10,

which completes the proof.
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Proof of Theorem 7. Combining Lemma 8–10 and taking a union bound, we know that with positive
probability (at least 1/2), all of the following hold:

|S| ≤ np+ n2/3, X ≥ (1− ε)|FM | · (2p2 − p4), and Y ≥ (1− ε)|FE | · p2.

Therefore there is some S such that all of the above hold. Then the number of rainbow edges
contained in S is at least

X + Y ≥ (1− ε)|FM | · (2p2 − p4) + (1− ε)|FE | · p2

≥ (1− ε)(α− ξ)n(2p2 − p4) + (1− ε)(1− α− ξ)n · p2.

With a look at (2) and setting 3c := (1− ε)(α− ξ)(2p2 − p4) + (1− ε)(1− α− ξ)p2 − p > 0, for n
large enough we have that |S| ≤ βn for β := p+ c and the number of rainbow edges contained in S
is at least (β + c)n =

(
(p+ 3c)− c

)
n. Therefore this completes the proof of Theorem 7.

3.1.1 A simplified proof of Theorem 6

Indeed, Theorem 6 will follow from the following theorem and Theorem 2 by setting N = |S| ≤ n
and k = cn.

Theorem 11. For any α > 1/2, there exist c > 0 such that for any large enough n, given an
n-vertex graph G and an edge coloring of G satisfying the assumption in Theorem 6, there exists
a subset S of V (G) of such that the size of a rainbow edge set contained in S is at least cn larger
than |S|.

Proof. We take p ∈ (0, 1) and ξ > 0 satisfying (2) and set

c := (α− ξ)(2p2 − p4) + (1− α− ξ)p2 − p > 0.

And we included each vertex of G into S independently with probability p. Let rS be the largest
size of a rainbow edge set contained in S. By linearity of expectations and following similarly as
the arguments in (5) and (7), we have

E(rS − |S|)
=|FM |(2p2 − p4) + |FE |p2 − pn

≥
(

(α− ξ)(2p2 − p4) + (1− α− ξ)p2 − p
)
n ≥ cn.

Therefore there exists an instance of S such that the conclusion of the theorem holds.

3.1.2 Sharpness of the condition α > 1/2

To get the logarithmic in n bound on the rainbow girth, it is necessary to assume α > 1/2 in The-
orem 5 and Theorem 6. The following n-vertex graph F with n/2 matchings of size 2 in FM and
n/2 single edges in FE (so that α = 1/2) has rainbow girth linear in n.

For simplicity, we may assume that n ≥ 8 is divisible by 4. The vertices of F are vi,j for
i = 1, . . . , n/4 and j = 1, . . . , 4. For each 1 ≤ i ≤ n/4, the four vertices vi,j for 1 ≤ j ≤ 4 form
a 4-cycle: {vi,1vi,2, vi,3vi,4} is a matching of size 2 from FM and vi,2vi,3, vi,4vi,1 are two edges in
two colors from FE . And {vi,3vi+1,2, vi,4vi+1,1} (with the first subscripts module n/4) for each
1 ≤ i ≤ n/4 is a matching of size 2 from FM . It can be verified that the n-vertex graph F satisfies
the assumption but has rainbow girth n/2.
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3.2 Triangles and single edges

Theorem 12. For any constant α > 0, if an n-vertex graph G and edge coloring of G satisfying
that at least αn color classes consisting of a triangle and at least (1 − α)n color classes consisting
of a single edge, then the rainbow girth is at most C log n for some constant C(α) > 0.

We can prove a slightly stronger result, which allows the total number of color classes to be less
than n.

Theorem 13. For any constants α > 0 and ξ < α/3, if an n-vertex graph G and edge coloring
of G satisfying that at least (α− ξ)n color classes consisting of a triangle and at least (1− α− ξ)n
color classes consisting of a single edge, then the rainbow girth is at most C log n for some constant
C(α, ξ) > 0.

Proof. We take each of the single edge and two edges from each triangle. Then in the n-vertex
graph, we have at least 2 · (α − ξ)n + (1 − α − ξ)n = (1 + α − 3ξ)n edges. Since 1 + α − 3ξ > 1,
Theorem 2 implies that there is a cycle of length at most C log n for some constant C(α, ξ) > 0. If
this cycle is not rainbow, we can replace two edges of the same color, which must come from the
same triangle, by the other edge in the triangle to get a shorter cycle. Do it repeatedly until we
obtain a rainbow cycle, which is of length at most C log n. This completes the proof.

3.2.1 Sharpness of the condition α > 0

To get a logorithmic in n bound on the rainbow grith, we need α > 0 in Theorem 12 and Theorem 13.
Otherwise for α = 0, an n-cycle with n edges in distinct colors has rainbow girth n.

3.3 Matchings and triangles

Theorem 14. There exists a constant C > 0 such that for any n-vertex graph G and edge coloring
of G with n colors, if each color class is either a matching of size 2 or a triangle, then the rainbow
girth is at most C log n.

Proof. This result follows immediately from Theorem 5 and Theorem 12. If the number of triangles
is at least αn for some α > 0, then Theorem 12 implies the result. Otherwise, the number of
matchings of size 2 is at least (1− o(1))n, where Theorem 5 implies the result.
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A An alternative proof of rainbow girth for matchings

Michael Krivelevich pointed out the following result to the author in a personal communication.

Theorem 15. For any γ > 0 satisfying 1− ( 1
2 )4γ < γ, the following holds: For an n-vertex graph

G with an edge coloring with at least γn colors, if each color class is a matching of size 2, then the
rainbow girth of G is at most C log n for some C(γ) > 0.

Proof. Let FM be the collection of γn many size-2 matchings. Let H be the graph with vertex
set V (G) = [n] and edge set ∪FM . Independently we take one edge from each matching F ∈ FM
uniformly at random, and we set the chosen edge set as T . Then

|T | = γn.

Let Z be the vertex subset {z ∈ V (G) : z 6∈ e for any e ∈ T}. If we can show Z ≥ (1 − γ′)n
for some constant γ′ < γ. Then the edge set T is contained in a vertex set of size at most γ′n.
Then Theorem 2 implies there is a rainbow cycle in T of length O(log n), which completes the proof.

Note that for each vertex v ∈ V (G),

P(v ∈ Z) =
(1

2

)dH(v)

,

i.e., none of edges in H that are incident to v is chosen into T . Therefore

E|Z| =
∑

v∈V (G)

(1

2

)dH(v)

≥ n
(1

2

)∑
v∈V (G) dH(v)/n

= n
(1

2

)4γ

,

where the inequality is by the convexity of the function f(x) = (1/2)x. Therefore there exists a
choice of T such that

|Z| ≥ n
(1

2

)4γ

.

Hence we can set γ′ = 1− ( 1
2 )4γ . By assumption we have γ′ < γ, and this completes the proof.
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Though not necessary for proving the theorem, applying the bounded difference inequality, one
can also show that Z in the proof is concentrated around EZ, since each choice of edge influences
the result by at most 4.

Remark 16. Numerical solution says for γ ≥ 0.922523266904828, we have 1 − ( 1
2 )4γ < γ so that

the conclusion of Theorem 15 holds.
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