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Abstract

Given a graph G and a coloring of its edges, a subgraph of G is called rainbow if its edges have distinct
colors. The rainbow girth of an edge coloring of G is the minimum length of a rainbow cycle in G. A
generalization of the famous Caccetta-Häggkvist conjecture, proposed by the first author, is that if in
an coloring of the edge set of an n-vertex graph by n colors, in which each color class is of size k, the
rainbow girth is at most dn

k
e. In the known examples for sharpness of this conjecture the color classes

are stars, suggesting that when the color classes are matchings, the result may be improved. We show
that the rainbow girth of n matchings of size at least 2 is O(logn).

1 Introduction

The girth g(G) of a graph G is the minimal length of a cycle in it. Given a graph G and a (not necessarily
proper) coloring of its edges, a subgraph of G is called rainbow if its edges have distinct colors. The rainbow
girth rg(G) of G (actually, of its edge-coloring) is the minimum length of a rainbow cycle. All the above
definitions apply to both the directed and undirected cases, where in the directed case the cycles are assumed
to be directed.

The famous Caccetta-Häggkvist conjecture [5] (below - CHC) is that any digraph G on n vertices satisfies
g(G) ≤ d n

δ+(G)e, where δ+(G) is the minimal out-degree of a vertex. There has been constant progress [6, 8,

9, 10] on the problem. In particular it has been shown that
(a) The CHC is true if n ≥ 2δ+(G)2 − 3δ+(G) + 1 [12], and
(b) g(G) ≤ n/δ+(G) + 73 for all G [13].
In [2] a possible generalization of CHC was suggested.

Conjecture 1.1. Let G be an undirected n-vertex graph. For any edge coloring of E(G) with n colors such
that each color class has size at least k, we have rg(G) ≤ dn/ke.

Devos et. al. [7] proved this conjecture for r = 2. In [1] a stronger version of the conjecture was proved
when all sets are of size 1 or 2.

For a directed edge e = uv let n(e) be the undirected pair {u, v}. To see that Conjecture 1.1 is a
generalization of CHC, given a directed graph G, for every vertex u let S(u) = {n(uv) | uv ∈ E(G)}
be the star of edges leaving u, with their direction removed. We claim that an undirected rainbow cycle
v1v2 . . . vk for the sets S(v) gives rise to a directed cycle in G. Otherwise there exists a vertex vi such that
{vi, vi+1} = n(vivi+1) and {vi, vi−1} = n(vivi−1). But this contradicts the fact that only one edge is chosen
from S(vi) for participation in the rainbow cycle. Thus the CHC is equivalent to the case of Conjecture 1.1
in which the color classes are n stars, each centered at a different vertex. Hence the sharpness of CHC implies
that of Conjecture 1.1.

The standard example showing that the former is the case is the graph on {1, 2, . . . , n} with edges
{i, i+ 1}, {i, i+ 2}, . . . , {i, i+ k} for i = 1, 2, . . . , n (indices taken modulo n). But this example is not unique.
Bondy [4] noted that if G and H are two graphs witnessing the sharpness of CHC, then blowing each vertex
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of G by a copy of H yields another such example (the blow-up is called also the lexicographic product of G
and H). In [11] more examples are given (accompanied by a conjecture that these exhaust all possible cases
of equality in the conjecture).

By the above argument, every example witnessing the sharpness of CHC gives rise to an example wit-
nessing the sharpness of Conjecture 1.1. In fact, all known extreme examples for this conjecture are obtained
this way, in particular they have stars as the sets of edges. This suggests that in the antipodal case to that
of stars, when the sets of edges are matchings, the conjecture can be strengthened. (“Antipodal” is with
respect to the covering number, which is 1 in a star, and the number of edges in a matching.) Indeed, a
simple observation is that for the first open case of CHC, that of δ+ = n

3 (in which a directed triangle is
conjectured to exist) the rainbow undirected version is trivial when the sets of edges are matchings. In this
case, it is enough that the arithmetic mean of the sizes of the sets is larger than n

4 , because then by Mantel’s
theorem there exists a triangle contained in the union of the sets, and if the sets are matchings then a triangle
is necessarily rainbow.

2 Rainbow cycles for matchings

Our main result is a corroboration of the intuition that sets of matchings have small rainbow girth.

Theorem 2.1. There exists a constant C such that for any n-vertex graph G and edge coloring of G with n
colors, if each color class is a matching of size 2, then the rainbow girth of G is at most C log n.

Remark 2.2. The assumption that G is a graph and not a multigraph breeds no loss of generality, since a
double edge is a rainbow digon, meaning that the rainbow girth is 2.

A key ingredient in the proof is a result by Bollobás and Szemerédi [3] on the girth of sparse graphs.

Theorem 2.3. For n ≥ 4 and k ≥ 2, every n-vertex graph with n+ k edges has girth at most

2(n+ k)

3k
(log k + log log k + 4).

The logarithms are to the base 2. Theorem 2.1 will follow from this result, and the following:

Theorem 2.4. There exist universal c, δ > 0, such that for any large enough n, given an n-vertex graph G
and an edge coloring of G with n colors such that each color class is a matching of size 2, there exists a
subset S of V (G) of size at most cn containing the edges of a rainbow set of edges of size at least (c+ δ)n.

Note that the last condition entails c + δ ≤ 1. Once this is proved, Theorem 2.1 follows by applying
Theorem 2.3 with k = δn.

The idea of proving Theorem 2.4 is that we take a random subset S of V (G) and consider the induced
subgraph G[S]. The crux of the argument is that the expected number of vertices E|S| is polynomially in n
less than the expected number of colors of the edges in G[S]. Furthermore, these two random numbers are
concentrated around their expectations, which follows from two well-known concentration inequalities.

Theorem 2.5 (Chernoff). Let X be a binomial random variable Bin(n, p). For any 0 < ε < 1, we have

P(X ≥ (1 + ε)EX) ≤ exp(−ε2EX/3).

Theorem 2.6 (Chebyshev’s inequality). Let X be a random variable. For any ε > 0, we have

P(|X − EX| ≥ εEX) ≤ VarX/(εEX)2,

where VarX is the variance of X.

Proof of Theorem 2.4. Denote the i-th color class (which, by our assumption, consists of two disjoint edges)
by Mi. Our assumption that G is a graph and not a multigraph implies that the matchings Mi are disjoint.

A vertex v of G is called heavy if there are at least ε2n/106 rainbow edges incident to it, where ε > 0 is a
small constant to be determined later. Let D be the set of heavy vertices of G. Then we have

|D| ≤ 2 · 2 · n
(ε2n/106)

≤ 107

ε2
. (1)

2



Let S = D ∪ Z be a random vertex subset of V (G), where each vertex of V (G) \ D is included in Z
independently with probability p, for some constant p to be determined later. Then

E|Z| = (n− |D|) · p and E|S| = E|Z|+ |D| ∼ np. (2)

For 1 ≤ i ≤ n let Xi be the indicator random variable that an edge of color i is contained in S, i.e.,
Xi := 1{an edge of color i is contained in S}. Since each vertex is included with probability at least p and Xi is an
increasing event with respect to the probability that a vertex is included in S, by inclusion-exclusion we have

EXi ≥ 2p2 − p4.

Let

X :=

n∑
i=1

Xi. (3)

We have
EX ≥ n(2p2 − p4). (4)

By Theorem 2.5, for fixed 0 < p < 1 and ε > 0, when n is large enough we have

P
(
|S| ≥ (1 + ε)np

)
≤ P

(
|Z| ≥ (1 + ε/2)E|Z|

)
≤ exp(−Ω(n)). (5)

So, with probability tending to 1 as n tends to infinity,

|S| ≤ (1 + ε)np. (6)

Writing p − (2p2 − p4) = p(p − 1)(p2 + p − 1), we see that for −1+
√
5

2 < p < 1, we have p < 2p2 − p4,
yielding the separation between EX and E|S|, needed for the application of Theorem 2.3.

Claim 2.7. There exist constants p ∈ (−1+
√
5

2 , 1) and ε > 0 such that

(1− ε)(2p2 − p4)− (1 + ε)p ≥ [(2p2 − p4)− p]/3 > 0, (7)

and with probability at least 0.9 for all large n,

X ≥ (1− ε)n(2p2 − p4). (8)

We fix 0.618 ≈ −1+
√
5

2 < p < 1 and ε(p) > 0 satisfying (7).
To prove (8), we shall apply Chebyshev’s inequality. For this purpose we have to estimate VarX. With

a look at (3), we have

VarX = EX2 − (EX)2 =
∑
i,j

(EXiXj − EXiEXj). (9)

Note that if the edges in the color classes i, j are vertex-disjoint, then Xi and Xj are independent and
EXiXj − EXiEXj = 0.

Since the matchings Mj are disjoint, for every i ∈ [n] at most 6 =
(
4
2

)
matchings Mj can have an edge

contained in
⋃
Mi. This means that there exist at most 2 · 6n pairs (Mi,Mj) such that an edge from Mj is

contained in
⋃
Mi, or vice versa. Thus the contribution of such pairs to VarX is at most O(n).

Apart from vertex-disjointness, there are two more possible forms of Mi ∪Mj :
I. three connected components: one 2-path and two disjoint edges, or
II. two vertex-disjoint 2-paths.
Examine Case I. Let Mi = {a, b}, where a = xy, b = uv, and let Mj = {c, d}, where c = xz and d = st.
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If x is a heavy vertex, then EXiXj−EXiEXj = 0: since {a ⊆ S} = {y ∈ S}, {b ⊆ S}, {c ⊆ S} = {z ∈ S},
and {d ⊆ S} are mutually independent,

EXiEXj

=
(
P(a ⊆ S and b 6⊆ S) + P(a 6⊆ S and b ⊆ S) + P(a ⊆ S and b ⊆ S)

)
·
(
P(c ⊆ S and d 6⊆ S) + P(c 6⊆ S and d ⊆ S) + P(c ⊆ S and d ⊆ S)

)
=
(
P(a ⊆ S)P(b 6⊆ S) + P(a 6⊆ S)P(b ⊆ S) + P(a ⊆ S)P(b ⊆ S)

)
·
(
P(c ⊆ S)P(d 6⊆ S) + P(c 6⊆ S)P(d ⊆ S) + P(c ⊆ S)P(d ⊆ S)

)
=P(a, c ⊆ S and b, d 6⊆ S) + P(a, d ⊆ S and b, c 6⊆ S) + P(b, c ⊆ S and a, d 6⊆ S)

+ P(b, d ⊆ S and a, c 6⊆ S) + P(a, b, c ⊆ S and d 6⊆ S) + P(a, b, d ⊆ S and c 6⊆ S)

+ P(a, c, d ⊆ S and b 6⊆ S) + P(b, c, d ⊆ S and a 6⊆ S) + P(a, b, c, d ⊆ S)

=EXiXj .

If x is not a heavy vertex, the contribution to VarX for such (Mi,Mj) is at most 4 · n · ε
2n
106 , since there

are at most n ways to choose Mi, four ways to choose x, and at most ε2n
106 ways to choose Mj .

In case II, let Mi = {a, b}, where a = xy, b = uv, and let Mj = {c, d}, where c = xz and d = ut.
If both x and u are heavy vertices, then similarly to case I, we have EXiXj − EXiEXj = 0. Otherwise

the contribution to VarX for such (Mi,Mj) is at most 4 · n · ε
2n
106 .

Summing, we have

VarX = O(n) + 2 · 4 · n · ε
2n

106
≤ ε2n2

105
.

Since 1/2 ≤ p < 1, we have 2p2 − p4 ≥ 7/16. Applying Chebyshev’s inequality, we have

P(X ≤ (1− ε)n · (2p2 − p4)) ≤ P(X ≤ EX − εn · (2p2 − p4))

≤ VarX

(εn · (2p2 − p4))2
≤ ε2n2

105ε2n2(7/16)2
≤ 1/10.

This proves Claim 2.7.
Combining (8) with (5), we have that with probability at least 1/2 for all large n,

|S| ≤ (1 + ε)np < (1− ε)n(2p2 − p4) ≤ X.

Theorem 2.4 now follows from (7), upon taking c := (1 + ε)p and δ := [(2p2 − p4)− p]/3.

2.1 Fewer than n sets

In the original CHC, each set of edges is a star associated with a vertex, hence it was natural that there
are n sets. In the rainbow undirected case there is no natural choice of the number of sets. Indeed, the main
theorem is valid also with fewer than n sets.

Theorem 2.8. For any constant α > 3
√
6

8 , there exists a constant C such that for any n-vertex graph G and
edge coloring of G with αn colors, if each color class is a matching of size 2, then the rainbow girth of G is
at most C log n.

Proof. For the argument in the proof of Theorem 2.4 to work with αn colors, we need to have p < α(2p2−p4)
for some p (which would imply separation between E|S| ∼ pn and EX ≥ αn(2p2 − p4)).

Thus we need to find a minimal 0 < α0 < 1 such that p = α0(2p2 − p4) for some p ∈ (0, 1). This will
happen when the two curves y(p) = p and y(p) = α0(2p2 − p4) are tangent, namely (α0(2p2 − p4))′ = p′ = 1.

The above two constraints and α0p 6= 0 imply that α0 = 3
√
6

8 and the only feasible p is
√
6
3 .
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It would be interesting to find the optimal value of α in Theorem 2.8. For example, it should be at
least 1/2: for even n and G = Cn, assume the edges of the cycle in order are e1, e2, . . . , en. If we color the
edges ei and ei+n/2 by color i, then there is no rainbow cycle.
Acknowledgements. We thank the referees for their helpful suggestions. We also thank Xiaozheng Chen,
Yuhui Cheng, and Ruonan Li for identifying omissions in earlier versions of this work.
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