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Abstract. A pair (A,B) of hypergraphs is called orthogonal if |a∩ b| = 1 for

every pair of edges a ∈ A, b ∈ B. An orthogonal pair of hypergraphs is called
a loom if each of its two members is the set of minimum covers of the other.

Looms appear naturally in the context of a conjecture of Gyárfás and Lehel

on the covering number of cross-intersecting hypergraphs. We study their
properties and ways of construction, and prove special cases of a conjecture

that if true would imply the Gyárfás–Lehel conjecture.

1. A conjecture on cross-intersecting hypergraphs, and the
definition of “looms”

A hypergraph H is a collection of subsets of a set V = V (H). The elements of
V are vertices and the sets in H are edges. We assume that V (H) = ∪e∈He. If all
edges of H are of size r we say that H is r-uniform. If H is r-uniform and V (H)
is the disjoint union of r sets V1, . . . , Vr such that |e ∩ Vi| = 1 for every 1 6 i 6 r
and every edge e of H, then H is called r-partite. The sets Vi are then called sides
of H.

A matching is a set of disjoint edges. The collection of all matchings in a hyper-
graph H is denoted byM(H). A matching M ∈M(H) is perfect

⋃
M = ∪e∈Me =

V (H). The matching number ν(H) of a hypergraph H is maxM∈M(H) |M |. A cover
of H is a set of vertices meeting all edges of H. The covering number τ(H) of H is
the minimal size of a cover of H.

The union of all edges in a maximal matching is a cover, and hence in an r-
uniform hypergraph H, τ(H) 6 rν(H). A famous conjecture of Ryser is a sharp-
ening when H is r-partite:

Conjecture 1.1. If H is r-partite then τ(H) 6 (r − 1)ν(H).
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This conjecture, usually attributed to Ryser, first appeared in a thesis of one of
his students, Henderson [10].

The case r = 2 is the Frobenius-König-Hall theorem. The case r = 3 was proved
in [1]. The conjecture is open for r > 4. When ν(H) = 1, Gyárfás proved the case
r = 4, and Tuza [14] proved the case r = 5.

A pair of hypergraphs (A,B) is cross-intersecting (a notion coined by Bollobás)
if e ∩ f 6= ∅ for any e ∈ A and f ∈ B.

A pair (a, b) of sets is said to be orthogonal if |a ∩ b| = 1. We write then a ⊥ b.
A pair (A,B) of hypergraphs is orthogonal if a ⊥ b whenever a ∈ A, b ∈ B. We
write then A ⊥ B. Let H⊥ = {e ⊆ V (H) | {e} ⊥ H}. An r-uniform hypergraph H
is r-partite if and only if ν(H⊥) = r.

If (A,B) are cross-intersecting, then for any pair of edges e ∈ A and f ∈ B,
e ∪ f is a cover of A ∪ B, and hence if A is a-uniform and B is b-uniform, then
τ(A∪B) 6 a+b−1. Professedly motivated by Ryser’s conjecture, Gyárfás and Lehel
conjectured that this bound can be improved when A and B are both r-partite,
sharing the same r-partition.

Conjecture 1.2. [8, 11, 5] If A,B are non-empty cross-intersecting r-partite
hypergraphs, sharing the same r-partition, then τ(A ∪B) 6 2r − 2.

If true, then the conjecture is tight. An example showing this (possibly essentially
the only one) is obtained by taking the vertex set to be the r× (2r−2) grid, letting
A be the set of first r − 1 columns, and B the set of r-tuples meeting all edges of
A and all rows of the grid.

In fact, Conjecture 1.2 belongs to a different realm from that of Ryser’s con-
jecture: it is about rainbow matchings. For a system H = (H1, . . . ,Hm) of (not
necessarily distinct) hypergraphs, let νR(H) denote the maximal size of a rainbow
matching, namely a matching consisting of a choice of edges from distinct His
(not necessarily all). A pair H = (H1, H2) of non-empty hypergraphs is cross-
intersecting if and only if νR(H) < 2.

Haxell [9] proved:

Theorem 1.3. If H1, . . . ,Hm are r-uniform and τ(
⋃
i∈I Hi) > (2r−1)(|I|−1) for

every I ⊆ [m] then νR(H) = m (namely there exists a full rainbow matching).

This explains the interest in τ(A ∪B) in Conjecture 1.2.
Conjecture 1.2 can be generalized along the same lines:

Conjecture 1.4. If H = (H1, . . . ,Hm) is a family of r-partite hypergraphs sharing
the same r-partition and τ(

⋃
i∈I Hi) > (2r − 2)(|I| − 1) for every I ⊆ [m], then

νR(H) = m.

Conjecture 1.2 is the case m = 2. Later we shall meet indications that the
condition of r-partiteness is unnecessarily strong — it may suffice to assume the
existence of one set orthogonal to all Hi (in an r-partite hypergraph every side
satisfies this).

For a hypergraph H let C(H) be the set of covers of H, and let Cmin(H) be the
set of minimal covers of H. For an integer k, let

Ck(H) := {K ∈ C(H) : |K| = k}.
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For our later applications, we may assume that V (Ck(H)) = V (H) for every k.
Clearly, if H is r-uniform, then for every s

(1) Cr(Cs(H)) ⊇ H.
For two hypergraphs K and J on the same vertex set, if K ⊆ J , then Cr(J) ⊆
Cr(K), and hence Cs(Cr(Cs(H))) ⊆ Cs(H). Applying (1) with Cr(H) replacing
H, we get Cr(H) ⊆ Cr(Cs(Cr(H))), and interchanging r and s (it is possible since
the above argument works for any number r and s), we get

(2) Cs(Cr(Cs(H))) = Cs(H).

Towards a proof of Conjecture 1.2, we may assume that A and B are orthogonal,
because if |e∩f | > 2 for some e ∈ A and f ∈ B, then e∪f forms a cover of A∪B of
size at most 2r− 2. Note that τ(A), τ(B) 6 r as any edge of A is a cover of B and
vice versa. We may also assume that τ(A) = τ(B) = r, otherwise a cover of (say) A
of size at most r−1, together with an edge of A, forms a cover of A∪B of size at most
2r−2. The negation assumption on the conjecture, namely that τ(A∪B) > 2r−2,
is preserved under replacing A and B by hypergraphs containing them, and hence
we may assume that A = Cr(B) and B = Cr(A). Indeed, let A′ = Cr(B), we have
A ⊆ A′. Let B′ = Cr(A

′). By (1) we have B ⊆ Cr(Cr(B)) = B′. Furthermore
by (2), we have A′ = Cr(B) = Cr(Cr(Cr(B))) = Cr(Cr(A

′)) = Cr(B
′).

We tag a pair of r-uniform hypergraphs satisfying all these conditions an (r, r)-
loom. This can be generalized to pairs of hypergraphs of not necessarily equal
uniformities.

Definition 1.5. Let r, s > 1. An (r, s)-loom is a pair L = (A,B) of orthogonal
hypergraphs satisfying:

(1) A is r-uniform,
(2) B is s-uniform,
(3) τ(A) = s, τ(B) = r, and
(4) A = Cr(B), B = Cs(A).

Examples 1.6.

(1) The simplest loom is the (1, 1)-loom U in which A = B = {{v}}.
(2) For any r let Vr = (A,B) be the (unique) (r, 1)-loom, in which A =
{{v1, . . . .vr}} and B = {{v1}, . . . {vr}}.

(3) More generally, let A be an r-uniform matching with s edges, and B =
Cs(A) the set of all transversals of A. Then (A,B) is an (r, s)-loom.

(4) On the r × r grid let A consist of the r rows and r columns, and let B be
the set of r! permutation subgrids. Then (A,B) is an (r, r)-loom, a fact
provable by induction on r. For future reference, we name it Lr,r. Another
representation of this loom is setting V = E(Kr,r), A the set of stars of
size r in Kr,r, and B the set of perfect matchings.

A few observations:

Lemma 1.7. If L = (A,B) is an (r, s)-loom then V (A) = V (B).

Proof. If, say, v ∈ V (A) \ V (B), then v ∈ a for some a ∈ A and a \ {v} is a cover
of B, contradicting the assumption τ(B) = r. �

Lemma 1.8. If L = (A,B) is an (r, r)-loom and r > 1 then ν(A) > 1. Moreover,
every edge of A has an A-edge disjoint from it.
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Proof. If e ∈ A does not have an A-edge disjoint from it then it belongs to Cr(A),
and hence to B. This contradicts the orthogonality condition. �

For a hypergraph H and a vertex v of H, let starH(v) = {e ∈ H : v ∈ e}.

Lemma 1.9. Let L = (A,B) be an (r, r)-loom. If starA(x) ⊆ starA(y), then
starA(x) = starA(y).

Proof. Negation means that there is an edge e ∈ A containing both x and y and an
edge e′ ∈ A containing y but not x. Let f be an edge of B containing x. Since f
meets e′ and is orthogonal to e, it contains a vertex in e′ \ e. Then (f \ {x}) ∪ {y}
is also a cover of A as all the edges containing x must contain y. Thus f ′ =
(f \{x})∪{y} ∈ B. Then |f ′∩e′| > 1, contrary to the assumption that A ⊥ B. �

Lemma 1.10. Let L = (A,B) be an (r, s)-loom. A matching M ∈M(A) is perfect
if and only if |M | = s.

Proof. If M is perfect then its edges meet all vertices of any f ∈ B. The orthogo-
nality condition implies then that |M | = |f | = s. For the other direction, assume
|M | = s. If there exists a vertex v ∈ V (L) \ V (M) then any f ∈ B containing v is
not large enough to meet all edges in M . �

Notation 1.11. For a function f : S → R>0 let |f | =
∑
s∈S f(s).

Given a hypergraph H, a fractional matching of H is a function f : E(H)→ R>0
satisfying

∑
e∈H:v∈e f(e) 6 1 for every v ∈ V (H). It is called perfect if equality

holds for all v ∈ V . The fractional matching number ν∗(H) is the maximum of |f |
over all fractional matchings f of H. The characteristic function of a matching is
a fractional matching, hence ν(H) 6 ν∗(H). A fractional cover of H is a function
g : V (H) → R>0 satisfying

∑
v:v∈e g(v) > 1 for every e ∈ H. The fractional

covering number τ∗(H) is the minimum of |g| over all fractional covers g of H. The
characteristic function of a cover is a fractional covering, hence τ∗(H) 6 τ(H). By
LP duality, τ∗(H) = ν∗(H), so

ν(H) 6 ν∗(H) = τ∗(H) 6 τ(H).

Lemma 1.12. In an (r, s)-loom L = (A,B), A has a perfect fractional matching
if and only if ν∗(A) = s.

Proof. Given b ∈ B, for any fractional matching f of A,

|f | =
∑
u∈b

∑
a∈A:u∈a

f(a).

The right-hand side is s if and only if f is saturated at each u ∈ b. The lemma
follows from this and the fact that

⋃
B = V (L). �

Of course, symmetric claims of these lemmas hold for B.
Looms are relevant to Conjecture 1.2, but they are also interesting on their own

merit. Presently we know precious little about them. A central question we do
not know the answer to is whether each component of a loom must have a perfect
fractional matching. As we shall see in Section 4, a positive answer would imply
Conjecture 1.2.
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2. Bounding the fractional matching number

Let us indeed start with the fractional case of Conjecture 1.2. It turns out to be
true, with a margin: it does not require r-partiteness, and the 2-factor is redundant.

Theorem 2.1. If A and B are cross-intersecting r-uniform hypergraphs then τ∗(A∪
B) 6 r.

This was proved in [4], and generalized in [2] to:

Theorem 2.2. Let H = (H1, H2, . . . ,Hm) be a system of r-uniform hypergraphs.
If τ∗(

⋃
i∈I Hi) > r(|I| − 1) for every I ⊆ [m] then νR(H) = m (namely there exists

a full rainbow matching).

A standard deficiency argument yields a generalization:

Theorem 2.3. If νR(H) < m then there exists a subset I of [m] for which τ∗(∪i∈IHi) 6
r(|I| − (m− νR(H))).

If νR(H) = 1 and Hi 6= ∅ for all i, then necessarily the set I in the theorem is
[m]. This yields:

Theorem 2.4. [4, 2] If νR(H) = 1 and Hi 6= ∅ for all i, then τ∗(
⋃

16i6mHi) 6 r.

In [4] it was shown that the fractional cover witnessing this result can be chosen
as a convex combination of {χe}e∈Hi

for some i. (χe is the characteristic function
of e, namely χe(v) = 1 if v ∈ e and χe(v) = 0 if v /∈ e.)

Corollary 2.5. If A,B are cross-intersecting, A is r-uniform and B is s-uniform
then τ∗(A ∪B) 6 max(r, s).

Proof. Assume r > s. Replace every edge b ∈ B by b∪dummy(b), where dummy(b)
is a set of size r − s, disjoint from V (A) ∪ V (B) and dummy(b) ∩ dummy(c) = ∅
whenever b 6= c. Apply now Theorem 2.1. �

It can be shown that equality holds in Theorem 2.4 if and only if ν∗(Hi) = r for
some 1 6 i 6 m. Let us state and prove this just for m = 2.

Theorem 2.6. If H1, H2 are cross-intersecting r-uniform hypergraphs and τ∗(H1∪
H2) = r then maxi=1,2 ν

∗(Hi) = r.

Proof. Assume, for contradiction, that

(3) max
i=1,2

ν∗(Hi) < r.

Let V = V (H1 ∪H2). Let Ci = conv({χe ∈ R|V | | e ∈ Hi}) be the convex hull
of the characteristic functions for i = 1, 2. By the cross-intersection assumption
χe1 · χe2 > 1 for any e1 ∈ H1 and e2 ∈ H2. Hence w1 ·w2 > 1 for any w1 ∈ C1 and
w2 ∈ C2.

Let ui be the shortest vector in Ci (i = 1, 2). Since Hi is r-uniform, we have
ui · 1̄ = r, where 1̄ ∈ R|V | is the all 1s vector. Since u1 · u2 > 1, at least one of
u1, u2 has length at least 1.

Assume first that one of u1, u2 is strictly longer than 1, say ||u1|| > 1. Since
u1 is the shortest vector in C1, we have u1 · χe > u1 · u1 > 1 for every e in H1.
Therefore, for some 0 < α < 1 we have αu1 ·χe > 1 for every e ∈ H1. By (3), there
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exists a fractional cover g of H2 satisfying |g| < r. Then w = αu1 + (1 − α)g is a
fractional cover of H1 ∪H2. Since |w| = w · 1̄ < αr+ (1− α)r = r, this contradicts
the assumption of the theorem.

We may thus assume that ||u1|| = ||u2|| = 1. This implies u1 = u2 =: u, since
otherwise u1 · u2 < 1. The vector u is then a fractional cover of H1 ∪H2 of weight
u1 · 1̄ = r.

Claim 2.6.1. Let supp(u) := {v ∈ V | u(v) > 0}. Then |supp(u)| = r2, and
u(v) = 1

r for every v ∈ supp(u).

Proof of the claim. We first show that |supp(u)| 6 r2. Let f be a fractional match-
ing of H1 ∪ H2 with |f | = r. By complementary slackness,

∑
e:v∈e f(e) = 1 for

every v ∈ supp(u). Therefore

|supp(u)| =
∑

v∈supp(u)

1 =
∑

v∈supp(u)

∑
v∈e

f(e)

6
∑
v∈V

∑
e:v∈e

f(e) =
∑
e

∑
v:v∈e

f(e) = r
∑
e

f(e) = r2.

For the inverse inequality, by the Cauchy-Schwarz inequality we have:

r = u · χsupp(u) 6 ||u|| × ||χsupp(u)|| =
√
|supp(u)|

so |supp(u)| > r2. The claim that u is constant follows from the characterization
of equality in the Cauchy-Schwarz inequality. �

To deduce Theorem 2.6 from the claim, write u =
∑
e∈H1

αeχe with
∑
e∈H1

αe =

1, and let f : E(H1) → R>0 be defined by f(e) = rαe. Since
∑
e∈H1:v∈e f(e) =

ru(v) = 1 for every v ∈ V (H1), f is a fractional matching of H1. Its weight f is∑
e∈H1

f(e) = r
∑
e∈H1

αe = r, which proves the theorem. �

Remark 2.7. The condition τ∗(H1∪H2) = r is necessary: it is not always true that
if A,B are cross-intersecting then ν∗(A ∪ B) = max(ν∗(A), ν∗(B)). For example,
if H1 = {ab, bc} and H2 = {ac} then ν∗(Hi) = 1 (i = 1, 2) while ν∗(H1 ∪H2) = 3

2 .

3. Many mutually cross-intersecting hypergraphs

Famously, there can be no more than r+1 mutually orthogonal r-uniform match-
ings of size r each. This is usually expressed in terms of mutually orthogonal Latin
squares — there can be no more than r− 1 of those of order r (see, e.g., [13, Theo-
rem 6.29]). The bound is attained when there exists an (r + 1)-uniform projective
plane, in particular when r is a power of a prime. Since a matching of size r has
τ∗ = r, the following is a fractional generalization of this theorem.

Theorem 3.1. Let (H1, . . . ,Hm) be a family of pairwise cross-intersecting r-uniform
hypergraphs, where r > 2. If m > r + 1 then τ∗(Hi) < r for some 1 6 i 6 m.

Proof. Since e∩V (Hi) is a cover of Hi for every e ∈ Hj , there holds |e∩V (Hi)| = r,
so e ⊆ V (Hi). This proves that V (Hi) = V (Hj) for all i, j 6 m.

Every Hi is covered by any edge from any Hj , j 6= i, hence τ∗(Hi) 6 τ(Hi) 6 r.
Thus, the negation assumption on the theorem is that τ∗(Hi) = r for all i 6 m. Let
mi : Hi → R be a fractional matchings of Hi satisfying |mi| = r. Removing edges

of zero weight we may assume that Hi = supp(mi). Let wi(v) =
∑
e∈Hi:v∈e

mi(e)
r .

Claim 3.1.1. For any j 6 m, wi is a minimum fractional cover of Hj.
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Proof of the claim. For any f ∈ Hj we have

(4)
∑
v∈f

wi(v) =
∑
v∈f

∑
e∈Hi:v∈e

mi(e)

r
=
∑
e∈Hi

mi(e)

r
|f ∩ e| >

∑
e∈Hi

mi(e)

r
= 1.

On the other hand

|wi| =
∑
v∈V

∑
e∈Hi

mi(e)

r
=
∑
e∈Hi

∑
v∈e

mi(e)

r
=
∑
e∈Hi

mi(e)

r
· r = r,

proving the claim. �

By complementary slackness, for each h ∈ supp(mj) = Hj , we have
∑
v∈h wi(v) =

1. Thus in (4) we have equality, and hence

(5) |h ∩ e| = 1

for any e ∈ Hi and h ∈ Hj .
Let v ∈ V (H1) and e1 ∈ H1 be such that v 6∈ e1 (we may assume that there exist

such, since otherwise |H1| = 1 and τ∗(H1) = 1 < 2.) For each 2 6 j 6 r + 1 there
exists ej ∈ Hj such that v ∈ ej . But H1 and Hj are cross-intersecting, therefore
ej ∩ e1 6= ∅. By pigeonhole, there exist x ∈ e1 and 2 6 i < j 6 m such that
x ∈ ei ∩ e1 and x ∈ ej ∩ e1. Therefore {v, x} ⊆ ei ∩ ej , contradicting (5). �

Question 3.2. We know that the result is sharp for r a prime power. Is it sharp
also for other values of r? Namely, are there examples with m = r+1 and ν∗(Hi) =
r (1 6 i 6 m) for general r?

Definition 3.3. For integers r,m let g(r,m) be the maximum, over all m-tuples
(H1, . . . ,Hm) of pairwise cross-intersecting r-uniform hypergraphs, of min16i6m τ

∗(Hi).

For r having a projective plane Pr of uniformity r, we have g(r,m) > r− 1 + 1
r ,

by taking Hi = Pr for all i.

Conjecture 3.4. For m > r + 2 we have g(r,m) 6 r − 1 + 1
r , with equality if and

only if there is a projective plane of uniformity r.

The conjecture is true for r = 2, since in this case τ∗(Hi) < 2 means ν(Hi) = 1,
implying τ∗(Hi) 6 3

2 .

Theorem 3.5. For every r there exists m = m(r) such g(r,m) 6 r − 1 + 1
r .

Proof. Let C = C(r) be such that in any r-uniform hypergraph of size C there exists
a ∆-system with at least r+1 leaves. (A ∆-system with ` leaves is a hypergraph D
consisting of ` edges for which there exists a “core” set K, such that e ∩ f = K
for all pairs e 6= f ∈ D. The existence of C as above was proved in [6]). If there
exists Hi of size larger than C, then Hi contains a ∆-system with r+ 1 leaves, and
then its core is a cover for every other Hj , and hence τ(Hj) 6 r − 1 for all j 6= i.

Thus we may assume that |E(Hi)| 6 C for all 1 6 i 6 m. For large enough m
there exist then j1 6= j2 for which Hj1 = Hj2 . Then ν(Hj1) = ν(Hj2) = 1, and
hence by a theorem of Füredi [7, Theorem], we have τ∗(Hj1) 6 r − 1 + 1

r . �
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4. The fractional matching number of looms

Apart from the present section, the rest of the paper is devoted to the con-
struction of looms. But before embarking on this project, we present a conjecture
that implies Conjecture 1.2. This way we can accompany each construction with a
verification of the conjecture in the constructed loom.

For a loom L = (A,B) let

τ(L) := τ(A ∪B), ν(L) := ν(A ∪B) and τ∗(L) := τ∗(A ∪B).

Of course, ν(L) = max(ν(A), ν(B)).
By Corollary 2.5 if L = (A,B) is an (r, s)-loom then τ∗(L) 6 max(r, s). It may

well be that equality holds.

Conjecture 4.1. If L = (A,B) is an (r, s)-loom then τ∗(L) = max(r, s).

By Theorem 2.6, if r = s then this would imply that max(τ∗(A), τ∗(B)) = r.
More generally:

Conjecture 4.2. If L = (A,B) is an (r, s)-loom then τ∗(A) = s, τ∗(B) = r.

Proposition 4.3. If Conjecture 4.2 is true for an (r, s)-loom (A,B), then |V (A)| =
|V (B)| = rs.

Proof. Let w : A → R>0 be a fractional matching of size s. By Lemma 1.12,∑
e∈A:v∈e w(e) = 1 for every v ∈ V . Thus we have

|V (A)| =
∑

v∈V (A)

1 =
∑

v∈V (A)

∑
e∈A:v∈e

w(e) =
∑
e∈A

∑
v∈V :v∈e

w(e) =
∑
e∈A

rw(e) = rs.

�

In particular, Conjecture 4.2 implies Conjecture 1.2, since if the hypergraphs are
r-partite and |V (L)| = r2, then there exists a side of size at most r, and since every
side is a cover this implies τ(L) 6 r. Note that this result is not stronger than the
original conjecture (bounding the covering number by 2r− 2), because we used the
negation assumption on the latter.

4.1. Pinnability.

Definition 4.4. A hypergraph H is said to be pinnable if H⊥ 6= ∅.

We suspect that in Conjecture 1.2 the milder assumption of pinnability suffices:

Conjecture 4.5. If A,B are cross-intersecting r-uniform hypergraphs and A ∪ B
is pinnable, then τ(A ∪B) 6 2r − 2.

This conjecture can be formulated also for hypergraphs of different uniformities.

Conjecture 4.6. If A is r-uniform, B is s-uniform, A and B are cross-intersecting,
V (A) = V (B) and A ∪B is pinnable, then τ(A ∪B) 6 r + s− 2.

Theorem 4.7. Conjecture 4.6 is true for s = 2.

Proof. Let p ∈ (A ∪ B)⊥ be a pinning set for A ∪ B. Then B is a bipartite graph
with sides p, V \p. Let v ∈ p. By the assumption that V (A) = V (B), v is contained
in a triple e ∈ A. By the cross-intersection property e \ {v} ⊇ NB(p \ {v}), and
hence |NB(p \ {v})| 6 r − 1, so v + NB(p \ {v}) is a covering set of A ∪ B of size
at most r. �
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The condition V (A) = V (B) is essential — the theorem is not true, for example,
if one of the hypergraphs is empty.

A strengthening of Conjecture 1.4 is:

Conjecture 4.8. Let H = (H1, . . . ,Hm) be a family of r-uniform hypergraphs. If
H1 ∪ · · · ∪Hm is pinnable and τ(∪i∈IHi) > (2r− 2)(|I| − 1) for all I ⊆ [m] then H
has a full rainbow matching, i.e, νR(H) = m .

Theorem 4.9. For an (r, s)-loom (A,B), if τ∗(A) = s then B = A⊥.

Proof. Let p ∈ A⊥, we wish to show that p ∈ B. It suffices to show that |p| 6 s.
Let f be a maximum fractional matching, namely of size s. By complementary
slackness |f | = |p|, hence |p| 6 s, as desired. �

Theorem 4.10. If L = (A,B) is an (r, r)-loom and τ∗(A) = r, then |p| = r for
every set p ∈ (A ∪B)⊥.

Proof. Let f be a fractional matching of size r of A, then by Lemma 1.12 it is a
perfect fractional matching. Let p ∈ (A ∪B)⊥. We have

|p| =
∑
v∈p

∑
e∈A:v∈e

f(e) = |f | = r.

�

5. Constructions

Looms are varied, and yet scarce enough to make their construction challenging.
The simplest loom U, in which A = B = {{v}}, has already been mentioned. From
it we shall be able to construct many others, using simple operations, the first of
which is composition.

5.1. Composition of looms. Given two hypergraphs A and C on disjoint vertex
sets, their join A ∗ C is {a ∪ c | a ∈ A, c ∈ C}. Let L1 = (A,B1) be an (a, b)-loom
and L2 = (C,B2) be a (c, b)-loom, where V1 = V (A) = V (B1) is disjoint from
V2 = V (C) = V (B2). Let S = A ∗C and T = B1 ∪B2. The pair L1�1 L2 = (S, T )
is called the 1-composition of L1 and L2. The 1 indicates that the ∗ operation
is applied to the first coordinate. A similar definition and notation apply to 2-
compositions.

Lemma 5.1. For an (a, b)-loom L1 and a (c, b)-loom L2 on disjoint vertex sets,
L1 �1 L2 is an (a+ c, b)-loom.

The proof is easy, and is contained in the proof of Theorem 5.6 below.
A loom that is the composition of two looms is said to be decomposable. A

hypergraph is defined to be connected if its 1-skeleton (the collection of subsets of
size 2 of the edges) is a connected graph.

For sets S and T , we define

S � T = {s ∩ T | s ∈ S}.

Lemma 5.2. A loom is decomposable if and only if one of its components is not
connected.
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Proof. If L = (A,B) is decomposable, then by definition, at least one of A or B is
not connected.

For the other direction, let L = (A,B) be an (r, s)-loom in which one of the
components, say B, is not connected. That is, B = B1∪B2, where V (B1)∩V (B2) =
∅.

Let A1 = A � V (B1) = {a∩V (B1) | a ∈ A} and A2 = A � V (B2) = {a∩V (B2) |
a ∈ A}. We shall prove that (A1, B1), (A2, B2) are looms and (A,B) = (A1, B1)�1

(A2, B2).

Claim 5.2.1. For i = 1, 2, Ai is ri-uniform for some ri satisfying r1 + r2 = r.

Proof of the claim. Let e, f ∈ A, and assume for negation that (say) |f ∩V (B1)| <
|e∩V (B1)|. Then (f∩V (B1))∪(e∩V (B2)) is a cover of B of size smaller than r = |e|,
contrary to the assumption that τ(B) = r. �

Let ri be the uniformity of Ai for i = 1, 2, which by Claim 5.2.1 satisfies r1+r2 =
r.

Claim 5.2.2. (Ai, Bi) is an (ri, s)-loom for i = 1, 2.

Proof of the claim. First we prove that (Ai, Bi) are orthogonal. Let ai ∈ Ai, b ∈
Bi ⊆ B. Then ai = a ∩ V (Bi) for some a ∈ A. Since (A,B) are orthogonal,
|a ∩ b| = 1 and a ∩ b ⊆ V (Bi), meaning that ai ∩ b = a ∩ b and |ai ∩ b| = 1.

Next we show that τ(Bi) = ri and Cri(Bi) = Ai for i = 1, 2. For any ai ∈ Ai, we
have ai = a ∩ V (Bi) for some a ∈ A. Since a is a cover of Bi, then ai = a ∩ V (Bi)
is also a cover of Bi. Therefore Ai ⊆ C(Bi) and τ(Bi) 6 ri. Suppose e is a cover of
Bi of size at most ri. We take a ∈ A and aj = a∩ V (Bj) is a cover of Bj for j 6= i.
Hence e ∪ aj is a cover of B = Bi ∪Bj . Therefore τ(Bi) = ri (otherwise we have a
cover of B of size less than ri + rj = r) and e ∪ aj = a′ for some a′ ∈ A (otherwise
Cr(B) 6= A) so that e = a′ ∩ V (Bi) ∈ Ai, which proves Cri(Bi) = Ai.

Finally we show that τ(Ai) = s and Cs(Ai) = Bi. Since a cover of Ai is a cover
of A, we have τ(Ai) > τ(A) > s and Cs(Ai) ⊆ Cs(A) � V (Bi) = Bi. On the other
hand, any element of Bi is a cover of Ai, therefore τ(Ai) = s and Bi ⊆ Cs(Ai).
Hence Cs(Ai) = Bi. �

The above proof shows that A1 ∗ A2 ⊆ Cr(B) = A, and by definition we have
A ⊆ A1 ∗A2. Therefore A = A1 ∗A2 and then (A,B) = (A1, B1)�1 (A2, B2). �

On the way we proved:

Lemma 5.3. Let (A,B) be a loom. If C is a connected component of B, then
(A � V (C), C) is a loom.

The composition U�1r of U with itself r times is Vr, from Example 1.6 (2). The
s-fold �2-composition of Vr with itself results in the loom of Example 1.6 (3).

5.2. Blow-ups: a generalization of composition. Composition produces new
looms from given ones. There is a more general operation of this sort, which we call
“blow-up”. It takes a cross-intersecting pair P of hypergraphs and replaces each
vertex with a loom. Under certain conditions, the resulting pair of hypergraphs is a
loom. A sufficient condition is that P itself is a loom and we replace its vertices by
looms of the same size, but there are more general settings in which this is attained.
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Let P = (A,B) be a pair of orthogonal hypergraphs (not necessarily uniform),
satisfying

⋃
A =

⋃
B = V = [n]. Then A ⊆ Cmin(B) (and B ⊆ Cmin(A)): a− v is

not a cover for every v ∈ a, since there is an edge of B meeting a just in v.
Let Pi = (Ai, Bi) with 1 6 i 6 n on disjoint vertex sets, and let

C =
⋃
{Ai1 ∗ · · · ∗Aip | {i1, . . . , ip} ∈ A},

D =
⋃
{Bj1 ∗ · · · ∗Bjq | {j1, . . . , jq} ∈ B}.

We then call (C,D) a blow-up of P and denote it by P[P1, . . . ,Pn].

Remark 5.4. To see that compositions are a special case, note the following. If
L = (A,B) is the (2,1)-loom V2, and the uniformities of the second components of
L1 and L2 are the same, then L[L1,L2] = L1 �1 L2.

Theorem 5.6 below provides sufficient conditions for blow-ups to be looms. Be-
fore delving into them, here is an example against which they can be checked.

For x, y, z < 10 we write below xy for {x, y} and xyz for {x, y, z}.

Example 5.5. Number the vertices of the 3× 3 grid 1, 2, . . . , 9 so that the columns
are 147, 258, 369 and the rows 123, 456, 789.

Let

C = {147, 258, 369, 159, 158, 247, 259, 368}
and

D = {123, 456, 789, 357, 126, 345, 489, 567}.
Denote the pair (C,D) by V3,3.

To see that V3,3 is a blow-up, let P = (A,B) be a pair of hypergraphs on
{x1, x2, x3, x4, x5}, where

A = {x1x4, x2x5, x1x3x5} and B = {x1x2, x4x5, x2x3x4}.

Let L1 = ({{1}, {2}}, {12}) and L5 = ({{8}, {9}}, {89}) be (1, 2)-looms, L2 =
({36}, {{3}, {6}}) and L4 = ({47}, {{4}, {7}}) be (2, 1)-looms, and L3 = ({{5}}, {{5}})
be a (1, 1)-loom. Then P[L1,L2,L3,L4,L5] = (C,D).

We claim that V3,3 is a (3, 3)-loom. This can be checked directly, but it also
follows from the next theorem.

Theorem 5.6. Let P = (A,B) be an orthogonal pair of hypergraphs satisfying⋃
A =

⋃
B. Let Li = (Ai, Bi) be (ri, si)-looms for 1 6 i 6 n. If P[L1, . . . ,Ln] =

(C,D) satisfies

(1) C and D are uniform - say C is c-uniform and D is d-uniform, and
(2) For any minimal cover f of A that is not in B, we have

∑
j∈f sj > d, and

(3) For any minimal cover e of B that is not in A, we have
∑
i∈e ri > c.

Then (C,D) is a (c, d)-loom.

Note that in Example 5.5, {x1, x5} is a minimal cover of A and is not in B,
but the uniformity of the join of the second components of L1 and L5 is 4, which
is greater than 3. Therefore the blow-up satisfies the assumption of Theorem 5.6,
which implies that V3,3 is a loom.

Proof of Theorem 5.6.

Claim 5.6.1. C ⊥ D.
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Proof of the claim. Let e ∈ C and f ∈ D. By the construction e = ei1 ∪ · · · ∪ eip
where {i1, . . . , ip} ∈ A and ei` ∈ Ai` for every `, and f = fj1 ∪ · · · ∪ fjq where
{j1, . . . , jq} ∈ B and fj` ∈ Bj` for every `. Then by A ⊥ B, we have {i1, . . . , ip} ∩
{j1, . . . , jq} = {k}, and by the disjointness of V (Li) we have e∩ f = ek ∩ fk. Since
(Ak, Bk) is a loom, |e ∩ f | = |ek ∩ fk| = 1, as claimed. �

It remains to show that τ(C) = d, and Cd(C) ⊆ D (so that Claim 5.6.1 implies
Cd(C) = D). τ(D) = c and Cc(D) ⊆ C will follow symmetrically.

Claim 5.6.2. If f is a minimum cover of C, then for each j ∈ [n], if f ∩ V (Bj) is
non-empty then it belongs to Bj.

Proof of the claim. Suppose f ∩ V (Bj) 6= ∅. We claim that it is a minimum cover
of Aj .

First if it is not a cover of Aj , let f ′ = f \V (Bj). By the minimality of |f |, there
is an edge ∪i∈aei ∈ C, where a ∈ A and ei ∈ Ai, not covered by f ′. In particular,
we have j ∈ a. Then e = ∪i∈a\{j}ei ∪ e′j ∈ C is not covered by f , where e′j ∈ Aj is
an edge not covered by f ∩ V (Bj), a contradiction to the fact that f is a cover of
C.

Now if f ∩ V (Bj) is not a minimum cover of Aj , we can take a minimum cover

ej of Aj and set f ′ =
(
f \

(
f ∩ V (Bj)

))
∪ ej . Note that the size of f ′ is strictly

smaller than f but f ′ covers the same edges of C as f , contradicting the minimum
assumption on f . �

Claim 5.6.3. If f is a minimum cover of C, then J = {j : f ∩ V (Bj) 6= ∅} is a
minimal cover of A and is in B.

Proof of the claim. If J is not a cover of A, then there exists a ∈ A such that
a ∩ J = ∅. Choose an edge ei ∈ Ai for each i ∈ a. Then f ∩ (∪i∈aei) = ∅, a
contradiction to the assumption that f is a cover of C. So J is a cover of A. If it is
not minimal, we can remove a subset R so that J \R is a minimal cover of A, then
by Claim 5.6.2, f \ (∪j∈Rf ∩ V (Bj)) is still a cover of C but is of smaller size than
f , a contradiction to the minimum assumption of f . To see that J is in B, negating
this statement means that f is of size strictly larger than f ′ for any f ′ ∈ D. But
f ′ is a cover of C, a contradiction to the fact that f is a minimum cover. �

Combining Claim 5.6.2 and Claim 5.6.3 with the definition of the blow-up (C,D) =
P[L1, . . . ,Ln], we have τ(C) = d,Cd(C) ⊆ D so that Cd(C) = D by Claim 5.6.1,
and symmetrically we have τ(D) = c, Cc(D) = C — the remaining conditions
required on (C,D) for being a loom. This completes the proof of the theorem. �

Corollary 5.7. Let L = (A,B) be a (p, q)-loom on the vertex set V = [n], and
for each 1 6 i 6 n let Li = (Ai, Bi) be an (ri, si)-loom, where V (Li) are disjoint.
If ri1 + · · · + rip = c for every {i1, . . . , ip} ∈ A and sj1 + · · · + sjq = d for every
{j1, . . . , jq} ∈ B, and ri1 + · · ·+ rip+1

> c for any distinct vertices i1, . . . , ip+1 ∈ V
and sj1 + · · · + sjq+1

> d for any distinct vertices j1, . . . , jq+1 ∈ V , then (C,D) =
L[L1, . . . ,Ln] is a (c, d)-loom.

Proof. (1) is valid by the assumption of the corollary. By the symmetry between (2)
and (3), we only need to verify (3) of Theorem 5.6: if e is a minimal cover of B but
is not in A, then e is not a minimum cover of B, which means |e| > p. Therefore
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by the assumption of the corollary,
∑
i∈e ri > c. Hence L[L1, . . . ,Ln] satisfies (3)

of Theorem 5.6. �

Next we show that having perfect matchings and fractional perfect matchings
are preserved (in a sense to be stated below) by blow-ups.

Theorem 5.8. Let L = (A,B) be a (p, q)-loom, and for every i ∈ V (L) = [n], let
Li = (Ai, Bi) be an (ri, si)-loom. Let (C,D) = L[L1, . . . ,Ln], and suppose it is a
(c, d)-loom. If si1 = · · · = sip for {i1, · · · , ip} ∈ A and ν(A) = q, then ν(C) = d if
and only if ν(Ai) = si for each i.

Proof. For the “if” part, let a1, . . . , aq be a matching in A and ei,1, . . . , ei,si be a
matching in Ai. Then ∪i∈a`ei,j for j = 1, . . . , si, ` = 1, . . . , q is a matching of size
d in C.

For the “only if” part, by Lemma 1.10, assume that a1, . . . , ad is a perfect match-
ing in C. Then a1 ∩ V (Ai), . . . , ad ∩ V (Ai) form a perfect matching of Ai (ignoring
sets aj∩V (Ai) that are empty), so by Lemma 1.10 their matching number is si. �

Corollary 5.9. Let L = L1 �1 L2 = (C,D) for L1 = (A1, B1) and L2 = (A2, B2).
Then C has a perfect matching if and only if A1 and A2 both have perfect match-
ings. Also, D has a perfect matching if and only if both B1 and B2 have a perfect
matching.

Next we claim that having a perfect fractional matching is preserved by the
blow-up operation.

Theorem 5.10. Given a (c, d)-loom (C,D) = L[L1, . . . ,Ln] for L = (A,B),Li =
(Ai, Bi), where (A,B) is (p, q)-loom and Li are (ri, si)-looms. If si1 = · · · = sip for
{i1, · · · , ip} ∈ A, and ν∗(A) = q, ν∗(Ai) = si for each i then ν∗(C) = d.

Proof. By Lemma 1.12, there exists a perfect fractional matching f : A→ R>0 of A,
and w : A1 ∪ · · · ∪ An → R>0 a perfect fractional matching of each Ai. Note that
wi :=

∑
e∈Ai

w(e) = si. For each e = ei1 ∪ · · · ∪ eip ∈ C, where a = {i1, . . . , ip} ∈ A
and ei` ∈ Ai` , let g(e) := f(a)

∏p
`=1 wi`/s(a)p−1, where s(a) := si1 = · · · = sip . We

claim that g is a perfect fractional matching of C, which by Lemma 1.12 implies
ν∗(C) = d.

It is enough to show that for every v ∈ V (C),
∑
e∈C:v∈e g(e) = 1. Indeed, assume

v ∈ V (Ai). Then∑
e∈C:v∈e

g(e)

=
∑

a={i1,··· ,ip}∈A:i∈a

∑
e1∈Ai:v∈e1

∑
e2∈Ai2

· · ·
∑

ep∈Aip

g(e1 ∪ · · · ∪ ep)

=
∑

a={i1,··· ,ip}∈A:i∈a

∑
e1∈Ai:v∈e1

∑
e2∈Ai2

· · ·
∑

ep∈Aip

f({i1, . . . , ip})w1 · · ·wp/s(a)p−1

=
∑

a={i1,...,ip}∈A:i∈a

f({i1, . . . , ip})
∑

e1∈Ai:v∈e1

w1

∑
e2∈Ai2

w2 · · ·
∑

ep∈Aip

wp/s(a)p−1

=1 · 1 · s(a)p−1/s(a)p−1 = 1,

which completes the proof. �
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Corollary 5.11. If L,L1, · · · ,Ln satisfy the assumptions of Theorem 5.10 and Con-
jecture 4.2, then L[L1, . . . ,Ln] satisfies Conjecture 4.2. In particular, if the (r1, s)-
loom L1 and the (r2, s)-loom L2 satisfy Conjecture 4.2, so does L1 �1 L2.

6. Stars versus perfect matchings

For a graph G let PM(G) be the set of perfect matchings in the graph G and
ST (G) = {starG(v) | v ∈ V (G)} - both hypergraphs having E(G) as their ground
set. For an s-regular graph G on an even number n of vertices, let r = n

2 . Then
A = PM(G) and B = ST (G) are r-uniform and s-uniform, respectively. They are
orthogonal, and A = Cr(B). Let L(G) = (A,B). Note that despite the notation,
this is not necessarily a loom, because possibly B 6= Cs(A).

Examples 6.1.

(1) For G = Kn with even n > 6, the pair (A,B) as above is a loom. (See The-
orem 6.2 below.)

(2) If G = Kn,n, then L(G) is isomorphic to Ln,n from Example 1.6 (4).

Theorem 6.2. For n > 6 even, L(Kn) is an (n2 , n− 1)-loom.

Proof. Let A = PM(Kn) and B = ST (Kn). It is routine to check that A and
B are orthogonal and Cn

2
(B) = A. It remains to show that τ(A) = n − 1 and

Cn−1(A) = B. By Tutte’s theorem it suffices to show that after removing a non-
star set Γ of n − 1 edges, there is no S ⊆ V (G) such that the number t of odd
components of G− Γ in V \ S satisfies t > |S|.

Suppose there exist such Γ and S violating this claim. Let s = |S|. The even-ness
of n and the inequality t > s imply that

t > s+ 2.

Assume first that S = ∅. Then t > 2, and if one of the components of G − Γ is
of size p, then |Γ| > p(n − p). The assumption that Γ is not a star implies that
p(n− p) > n− 1 = |Γ| (here we used the condition n > 6), a contradiction.

Assume next that S 6= ∅. Let 1 6 c1 6 . . . 6 ct be the sizes of the odd
components of G − Γ in V \ S. Since s +

∑t
i=1 ci 6 n, we have s + 2 6 t 6 n − s

and then

s 6
n− 2

2
.

The number of removed edges is at least
(
n−s
2

)
−
∑t
i=1

(
ci
2

)
. Note that

∑t
i=1 ci 6

n − s and ci > 1, we have
∑t
i=1

(
ci
2

)
6
(
n−s−(t−1)

2

)
(which can easily be prove by

induction on t) so that

n− 1 >

(
n− s

2

)
−

t∑
i=1

(
ci
2

)
>

(
n− s

2

)
−
(
n− s− (t− 1)

2

)
=

1

2
(t− 1)(2n− 2s− t).

Note that 1
2 (t − 1)(2n − 2s − t) attains minimum − 3

2s
2 + (n − 5

2 )s + n − 1 at
t = s+ 2 for s+ 2 6 t 6 n− s. Therefore we should have

n− 1 > −3

2
s2 + (n− 5

2
)s+ n− 1.
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Then the minimum of the right-hand side is

min
(

2n− 5,
(n− 2)(n− 4)

8
+ n− 1

)
at s = 1 or n−2

2 . But it is impossible to have

n− 1 > min
(

2n− 5,
(n− 2)(n− 4)

8
+ n− 1

)
,

assuming n > 6, which is a contradiction. �

If G is an s-regular graph on n vertices and ST (G) $ Cs(PM(G)), namely L(G)
is not a loom, we may hope that the pair (PM(G), Cs(PM(G))) is a loom. For
this to be true, we need that Cs(PM(G)) ⊥ PM(G). This sometimes happens and
sometimes not, as shown by the following two examples.

Examples 6.3.

(1) Let P be the Petersen graph, A = PM(P ), B = C3(PM(P )). The hyper-
graph B includes, besides the stars, five triples that are themselves perfect
matchings. In the drawing of Petersen’s graph, such a triple consists of
two parallel edges, one on the inner pentagon and one on the outer, and an
edge perpendicular to both, connecting the two pentagons. Then (A,B) is
a (5, 3)-loom in which B has a perfect matching, and A does not (since the
chromatic index of the Petersen graph is 4).

(2) Let G be the 3-regular graph obtained from Petersen’s graph, by blowing
up (in the graph theory sense. Not to confuse with the blow-ups defined
in Section 5.2) every vertex by a triangle. The set of 3 edges incident with
every triangle (=blown-up vertex) is obviously a cover for A, and on the
other hand, it is contained in a perfect matching of the blow-up graph.

The following theorem states that any loom of the form (PM(G), Cs(PM(G)))
for some s-regular graph G satisfies Conjecture 4.2.

Theorem 6.4. For any s-regular graph, if
(
PM(G), Cs(PM(G))

)
is an (r, s)-

loom, then both its components, PM(G) and Cs(PM(G)), have perfect fractional
matchings.

ST (G) has a perfect fractional matching, obtained by putting weight 1
2 on ev-

ery star. Since Cs(PM(G)) ⊇ ST (G), this is also a perfect fractional matching
of Cs(PM(G)).

The existence of a perfect fractional matching of PM(G) is given by the following
theorem.

Theorem 6.5. Let G be an s-regular graph on n vertices and let A = PM(G). If
τ(A) > s− 1 then ν∗(A) = s.

The fractional edge-chromatic number χ∗e(G) (sometimes denoted by χ′f (G)) of
a graph G is the minimum total weight of a fractional edge-coloring of G, i.e.,
min

∑
M∈M(G) f(M) over all non-negative real functions f on M(G) satisfying∑

M∈M(G):e∈M

f(M) > 1

for every e ∈ E(G).



16 LOOMS

Given U ⊆ V (G), let t(U) = 2|E(G[U ])|
|U |−1 . Let

t(G) = max
U⊆V (G):|U | is odd

t(U).

We use the following result [12, Theorem 4.2.1].

Lemma 6.6.
χ∗e(G) = max(∆(G), t(G)).

Proof of Theorem 6.5. To prove ν∗(A) = s, we claim that it is enough to show
that χ∗e(G) = s. Indeed, let f : M(G) → [0, 1] be a fractional edge coloring of G
with

∑
M∈M(G) f(M) = s. We may assume that

∑
M∈M(G):e∈M f(M) = 1 for any

e ∈ E(G) as M(G) is a simplicial complex. Then

|V (G)|s =
∑

v∈V (G)

∑
e∈E(G):v∈e

∑
M∈M:e∈M

f(M)

=
∑
M∈M

∑
e:e∈M

∑
v:v∈e

f(M) =
∑
M∈M

2|M |f(M)

Note that |M | 6 |V (G)|/2, and
∑
M∈M f(M) = s. This implies that M is a perfect

matching of G whenever f(M) > 0. Therefore this f forms a fractional matching
of A of total weight s.

To prove χ∗e(G) = s, note that for any U ⊆ V (G) of odd size, ∅ $ U $ V (G) as
|V (G)| is even, therefore the cut E(U, V (G)\U) is a cover of A. Since |E(U, V (G)\
U)| = s|U | − 2|E(G[U ])| has different parity from s− 1 and since τ(A) > s− 1, we

have |E(U, V (G) \ U)| > s. Then |E(G[U ])| 6 s|U |−s
2 , implying

t(U) =
2|E(G[U ])|
|U | − 1

6
2 s(|U |−1)2

|U | − 1
= s.

Since ∆(G) = s, then Lemma 6.6 implies that χ∗e(G) = max(∆(G), t(G)) = s. �

This concludes the proof of Theorem 6.5, and hence also of Theorem 6.4.
So far, in all our examples at least one component of the looms has a perfect

(integral) matching. In the following example, neither component of the loom has
a perfect matching.

Example 6.7. Let L1 = (A1, B1) = (ST (K10), PM(K10)), which is a (9, 5)-loom
by Theorem 6.2 and ν(A1) = 1 < 5. Let L2 = (A2, B2) = (PM(K6), ST (K6)),
which is a (3, 5)-loom by Theorem 6.2 and ν(B2) = 1 < 3. Then L = (A,B) = L1�1

L2 is a (12, 5)-loom with no perfect matching in either component by Theorem 5.8.

7. (r, 2)-looms

An (r, 1)-loom is just Vr, from Example 1.6 (2), meaning that if it is non-trivial
then it is decomposable. As we shall see, this is not true for (r, s)-looms when
r, s > 3, but it is true for s = 2.

Theorem 7.1. Any (r, 2)-loom L = (A,B) is decomposable.

By Lemma 5.2 it suffices to show that at least one of A,B is disconnected. This
will follow from:

Lemma 7.2. In an (r, 2)-loom L = (A,B), every connected component D of B is
a complete bipartite graph with two sides of the same size.
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This already proves the theorem: in an (r, 2)-loom L = (A,B), if B is con-
nected, then A, which consists of the two sides of the complete bipartite graph, is
disconnected.

Proof of Lemma 7.2. As to bipartiteness, suppose, for contradiction, that B con-
tains an odd cycle O. Then any edge of A, being a cover of B, must contain both
endpoints of some edge of O, contradicting the fact that A ⊥ B. To prove that D is
complete, it suffices to show that if NB(x) ∩NB(y) 6= ∅ then NB(x) = NB(y). So,
assume for negation that u ∈ NB(x) ∩ NB(y) and v ∈ NB(x) \ NB(y). Then any
a ∈ A not containing y must contain u, hence it avoids x, and to cover xv it must
contain v. Thus yv is a cover of A, and being minimum it must belong to B, as
desired. Therefore each connected component of B is a complete bipartite graph.

Let Di, 1 6 i 6 m be the connected components of B, and let Xi,j , j = 1, 2
be the sides of Di, where |Xi,1| 6 |Xi,2|. Then τ(B) =

∑
16i6m |Xi,1|. Remember

that τ(B) = r.
We claim that

|Xi,2| = |Xi,1|
for all 1 6 i 6 m. To prove the claim, assume, for contradiction, that |Xi,2| > |Xi,1|
for some i. Let a be an edge of A meeting Xi,2. By the orthogonality condition
a ∩Xi,1 = ∅, and since it is a cover of B, it contains Xi,2. For the same reason a
contains a side from each Di, so |a| > r, contradicting the fact that A is r-uniform.
This completes the proof of the lemma. �

The above discussion provides a characterization of all (r, 2)-looms:

Theorem 7.3. For an (r, 2)-loom (A,B), there exist pairs of sets (Xi,1, Xi,2)16i6t
satisfying:

• All Xi,j are pairwise disjoint, |Xi,1| = |Xi,2| =: qi,
•
∑

16i6t qi = r,

• A = {
⋃
Xi,σ(i) | σ ∈ [2][t]} and B =

⋃
16i6t{uv | u ∈ Xi,1, v ∈ Xi,2}.

Here [2][t] is the set of functions from [t] to [2].
Let

Li =
(
{Xi,1, Xi,2}, {uv | u ∈ Xi,1, v ∈ Xi,2}

)
=
(
{Xi,1},

{
{x}
}
x∈Xi,1

)
�2

(
{Xi,2},

{
{y}
}
y∈Xi,2

)
= Vqi �2 Vqi .

Then L = L1 �1 · · ·�1 Lt = (Vq1 �2 Vq1)�1 · · ·�1 (Vqt �2 Vqt).
Theorem 7.3 implies that ν(A) = 2 and ν(B) = r, thus ν∗(A) = 2 and ν∗(B) = r.

Hence Conjecture 4.2 is true when s = 2.

8. (3, 3)-looms

Theorem 8.1. Let L = (A,B) be a (3, 3)-loom on the vertex set V . Then

(1) |V | = 9,
(2) ν(A) = ν(B) = 3,
(3) For any pair e, f of disjoint edges in A, V \ (e ∪ f) ∈ A.

Proof.
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Claim 8.1.1. The three conditions are equivalent.

Proof of the claim. The implication (3) ⇒ (2) follows from Lemma 1.8.
(1) ⇒ (3): suppose |V | = 9. For any two disjoint edges e, f ∈ A and any g ∈ B,

we have |g∩e| = |g∩f | = |g∩(V \(e∪f))| = 1, which implies V \(e∪f) ∈ C3(B) = A
so that ν(A) = 3.

(2) ⇒ (1): let e, f, g be three disjoint edges in A. If there exists a vertex v 6∈
e ∪ f ∪ g, then an edge h ∈ B containing v cannot cover e, f, g, contradicting the
assumption that B = C3(A). �

Back to the proof of the theorem, let k = maxe1,e2,e3∈A | ∪3i=1 ei|. (2) follows
from the next result.

Claim 8.1.2. k = 9.

Proof of the claim. By Lemma 1.8 there are two disjoint edges, e1, e2 belonging
to A. By the orthogonality condition, no edge of B is contained in e1 ∪ e2, so
V \ (e1 ∪ e2) is a cover for B, and hence it is of size at least τ(B) = 3. This shows
that |V | > 9. Adding to e1, e2 any edge meeting V \ (e1 ∪ e2) proves k > 6.

Next we exclude the possibility k = 8. k = 8 means that there exist edges
e1, e2, e3 ∈ A such that e1∩e2 = e2∩e3 = ∅ and |e1∩e3| = 1, say e1∩e3 = {x}. Take
y ∈ V \(e1∪e2∪e3). Then starB(y) ⊆ starB(x), since for an edge b ∈ B containing
y to meet all edges e1, e2, e3 it must contain x. By Lemma 1.9 starB(x) = starB(y).
Since e3 is a cover of B, we have that (e3 \ {x}) ∪ {y} is also a cover of B, so it is
in A. Together with e1 and e2 it contains 9 vertices, contrary to the assumption
that k = 8.

It remains to exclude the case k = 7. Assuming for negation that this is the case,
since ν(A), ν(B) > 2, we can number the vertices so that 123, 456 ∈ A, 714, 825 ∈ B.
Let e be an edge of A containing 9. Since k = 7, the edge e contains vertices
x ∈ {2, 5} and y ∈ {1, 4}. Since starA(x) 6= starA(9) and starA(y) 6= starA(9),
which implies starA(9) * starA(x) and starA(9) * starA(y) by Lemma 1.9 so that
{9}∪{2, 5}\{x} and {9}∪{1, 4}\{y} are each contained in some edge of A. On the
other hand, any f ∈ B containing 9 must intersect the edges 123 and 456 of A, but
such f cannot include any element of {1, 2, 4, 5} by the orthogonality assumption.
Therefore 936 ∈ B and we have ν(B) = 3 and |V | = k = 9, a contradiction.

This completes the proof of Claim 8.1.2. �

By Claim 8.1.1 this also proves the theorem. �

In particular, this entails that in a (3, 3)-loom (A,B) there holds ν∗(A) = ν(A) =
ν∗(B) = ν(B) = 3.

Corollary 8.2. Conjecture 4.2 is true for r = s = 3, and hence Conjecture 1.2 is
true for r = 3.

The next theorem characterizes (3, 3)-looms. If a (3, 3)-loom L = (A,B) is
decomposable, then (A,B) = (A1, B1)�1 (A2, B2) for a (2, 3)-loom (A1, B1) and a
(1, 3)-loom (A2, B2), whose structure we know by Theorem 7.3. So we only need to
know how indecomposable (3, 3)-looms look. It turns out that there are just two
such looms.

Theorem 8.3. The only indecomposable (3, 3)-looms are L3,3 in Example 1.6 (4)
and V3,3 in Example 5.5.
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Proof. Let L = (A,B) be an indecomposable (3, 3)-loom. Let M,N be perfect
matchings in A and in B, respectively. Number the vertices so that “columns”
M = {147, 258, 369} and N = {123, 456, 789} and view them as the sets of rows
(resp. columns) of a 3× 3 grid. Since A is connected, without loss of generality, we
may assume that at least one of the edges of 159 or 158 is in A.

(I) 159 ∈ A. By Lemma 1.8, there exists an edge of A disjoint from 159.
(1) Suppose there exists in A another “permutation” edge (whose vertices

are in distinct columns and rows), say 267. Then by Lemma 8.1,
[9] \ (159 ∪ 267) = 348 is in A. By renaming the vertices (swap 1
with 7, 5 with 8, and 3 with 6), the current known six edges of A
become “rows” and “columns” and the three edges of B become “even
permutation” edges. Since B is also connected and the edges of B
are orthogonal to those in A, then the remaining edges of B must
be “odd permutation” edges. By Lemma 1.8 three odd permutation
edges are in B. Therefore, in this case, the loom is isomorphic to L3,3

in Example 1.6 (4).
(2) Suppose there is no permutation edge ofA other than 159. By Lemma 1.8,

there exists an edge of A disjoint from 159. Without loss of generality,
247 ∈ A. Then 368 = [9]\(159∪247) ∈ A. Also 158 = [9]\(247∪369) ∈
A and 259 = [9] \ (147∪ 368) ∈ A. We now have eight edges in A, and
we turn to B. Since B is connected, by the orthogonality of A and B
and by the covering property, the only possible edges to connect 123
with 456 or 789 are 126, or 345, or 357.

(i) If 357 ∈ B, then by Lemma 1.8 and Theorem 8.1, there is an
edge e of B containing 6 and being disjoint from 357. By the
orthogonality, this edge cannot contain 8 or 9 as 369, 368 ∈ A.
Since e is disjoint from 357 it does not contain 5, so to cover
259 ∈ A, it must contain 2. By the orthogonality, e cannot
contain 4 or 7, as 247 ∈ A. Since e is disjoint from 357, to cover
147 ∈ A, it must be 126. Then 489 = [9] \ (357∪ 126) ∈ B. This
implies 345 = [9]\(126∪789) ∈ B and 756 = [9]\(489∪123) ∈ B.
We now have eight edges of B, and it is easy to check that (A,B)
is isomorphic to V3,3 in Example 5.5.

(ii) Note that 126 ∪ 345 ∪ 789 = [9]. If one of 126 and 345 is in B,
then the other is also in B. The edge 789 is connected to 123 or
456 in B, symmetrically, one of 756 or 489 or 357 is in B. If 357
is in B, then we have done by the above case. We may assume
that both 756 and 489 are in B (as 756∪ 489∪ 123 = [9]). Then
357 = [9] \ (126 ∪ 489) ∈ B and we are done.

(II) Suppose 158 is in A and no permutation edge (that intersects each of
147, 258, 369 at one vertex) is in A. Then 247 = [9] \ (158 ∪ 369) is in
A. Since A is connected, we may assume there is an edge of A contained
in 258 ∪ 369.
(1) 269 or 358 is in A. Note that 147 ∪ 269 ∪ 358 = [9]. If one of them is

in A, then so is the other. Then 169 = [9] \ (247 ∪ 358) is in A and
then 347 = [9] \ (169 ∪ 258) is in A. Let us now go back to B. By
assumption it is connected, and hence 123 should be connected to 456
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or to 789. But for any x ∈ 123 and y ∈ 456 ∪ 789, xy is contained in
some edge of A, contradicting the orthogonality of A and B.

(2) 259 and 368 = [9] \ (259 ∪ 147) are in A. Then 159 = [9] \ (247 ∪ 368)
is in A, a contradiction to the assumption that no permutation edge
is in A.

We complete the proof of the theorem. �
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